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“Mirror mirror on the wall, who is the fairest of them all?”
The Evil Queen

What is a fair way to assign rooms to several housemates, and divide the rent between them? This is not
just a theoretical question: many people have used the Spliddit website to obtain envy-free solutions to rent
division instances. But envy freeness, in and of itself, is insufficient to guarantee outcomes that people view
as intuitive and acceptable. We therefore focus on solutions that optimize a criterion of social justice, subject
to the envy freeness constraint, in order to pinpoint the “fairest” solutions. We develop a general algorithmic
framework that enables the computation of such solutions in polynomial time. We then study the relations
between natural optimization objectives, and identify the maximin solution, which maximizes the minimum
utility subject to envy freeness, as the most attractive. We demonstrate, in theory and using experiments on
real data from Spliddit, that the maximin solution gives rise to significant gains in terms of our optimization
objectives. Finally, a user study with Spliddit users as subjects demonstrates that people find the maximin
solution to be significantly fairer than arbitrary envy-free solutions; this user study is unprecedented in that
it asks people about their real-world rent division instances. Based on these results, the maximin solution
has been deployed on Spliddit since April 2015.

CCS Concepts: rApplied computing → Economics; rHuman-centered computing → User studies;rTheory of computation → Market equilibria;

Additional Key Words and Phrases: Computational fair division

1. INTRODUCTION
Many a reader may have personally experienced the rent division problem: several
housemates move in together, and need to decide who gets which room, and at what
price. The problem becomes interesting — and, more often than not, a source of frus-
tration — when the rooms differ in quality. The challenge is then to achieve “rental
harmony” [Su 1999] by assigning the rooms and dividing the rent fairly.

In more detail, suppose each player i has value vij for room j, such that each player’s
values for the rooms sum up to the total rent. The (quasilinear) utility of player i for
getting room j at price pj is vij − pj . A solution (i.e. an assignment of the rooms and
division of the rent) is envy free [Foley 1967] if the utility of each player for getting
his room at its price is at least as high as getting any other room at the price of that
room. More generally, one can think of this problem as allocating indivisible goods and
splitting a sum of money — but we adopt the rent division terminology, which grounds
the problem and justifies our assumptions.

Envy freeness is undoubtedly a compelling fairness notion. But what makes it truly
powerful in the context of rent division is that an envy-free solution to a rent division
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problem always exists [Svensson 1983]. Even better, such a solution can be computed
in polynomial time [Aragones 1995].

However, envy-freeness in and of itself is insufficient to guarantee satisfactory solu-
tions. For example, consider an apartment with three rooms and total rent of $3. Each
player i has value $3 for room i, and value $0 for the two other rooms. Furthermore,
consider the solution that assigns room 1 to player 1 at $3, and, for i ∈ {2, 3}, gives
room i to player i for free. This solution is envy free: players 2 and 3 are obviously
overjoyed, while player 1 is indifferent between the three rooms. However, from an
interpersonal perspective, this solution is not fair at all, as the distribution of prices
between players is unequal. An intuitive alternative solution here would be to keep
the same assignment of rooms, but equally split the rent between the different rooms
— $1 per room — thereby equalizing the utilities of the players.

The challenge, therefore, is to choose among many possible envy-free solutions. And,
arguably, the most natural way to do this is to optimize a function of the utilities that
meets desirable social criteria, subject to the envy-freeness constraint [Alkan et al.
1991]. In particular, if we were to maximize the minimum utility of any player subject
to envy freeness, or if we were to minimize the maximum difference in utilities subject
to envy freeness, we would obtain the aforementioned solution in the example. This
focus on optimization in rent division motivates us to

... design polynomial-time algorithms for optimization under the envy-
freeness constraint; understand the relationship between natural optimiza-
tion objectives; and measure the theoretical and practical benefits of opti-
mization in rent division.

1.1. Real-World Connections and Implications: The Spliddit Service
The above challenges are especially pertinent when put in the context of Spliddit
(www.spliddit.org), a not-for-profit fair division website [Goldman and Procaccia
2014]. Spliddit offers “provably fair solutions” for the division of credit, indivisible
goods, chores, fare — and, of course, rent. Since its launch in November 2014, Splid-
dit has attracted more than 60,000 users, who, in particular, have created 13,277 rent
division instances (as of February 19, 2016).

Until April 2015, Spliddit’s rent division application relied on the algorithm of Ab-
dulkadiroğlu et al. [2004], which elicits the values of the players for the rooms, and
computes an envy-free solution assuming quasi-linear utilities. While many users were
satisfied with the results (based on their reported evaluations1), the algorithm does
provide nonintuitive solutions in some cases. This prompted an investigation of alter-
native approaches, and ultimately led to the deployment of a new algorithm in April
2015, based entirely on the results presented in this paper.

It is important to point out that Spliddit not only motivates our research questions,
but also helps answer them. Indeed, while Spliddit’s primary goals are making fair
division methods accessible to people, and outreach, a secondary goal is the collection
of an unprecedented dataset for fair division research [Goldman and Procaccia 2014].
This real-world dataset is exciting because, as noted by Herreiner and Puppe [2009],
fair division is hard to study in the lab: researchers can tell subjects in the lab what
their valuations are for different goods, but these values are not ecologically realis-
tic, in that they do not represent subjects’ actual preferences. To quote Herreiner and
Puppe [2009], “the goods in the lab are not really distributed among participants, but

1An example of one of many positive reviews: “This tool helped us a lot. We live in a flat populated by
international, young people, so it’s been almost a revolving door of roommates [...] With your method we
were able to avoid any long discussions. Thank you.”
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serve as temporary substitutes for money.” In contrast, Spliddit instances are ecolog-
ically valid, as they are posed by real people facing real division problems. Thus the
Spliddit data enables studies at a realistic level and scale that was not possible before.
Even better, we can ask Spliddit users to evaluate different solutions based on the
actual instances they participated in. This is exactly what we do in this paper.

1.2. Our Results
We start, in Section 3, by constructing a general yet simple algorithmic framework for
optimization under the envy-freeness constraint. Specifically, our algorithm maximizes
the minimum of linear functions of the utilities, subject to envy freeness, in polynomial
time. We do this by using the Second Welfare Theorem to argue that we can employ any
welfare-maximizing assignment of players to rooms, and then solve a linear program
to compute the optimal envy-free prices.2

Our main goal in Section 4 is to understand the relation between two solution con-
cepts: the maximin solution [Alkan et al. 1991], which maximizes the minimum utility
of any player subject to envy freeness; and the equitable solution, which minimizes
disparity — the maximum difference in utilities — subject to envy freeness. (Our al-
gorithm can compute either solution in polynomial time.) Our most significant result
in this section is proving that the maximin solution is also equitable, but not every
equitable solution is maximin.

Based on these results, we have implemented the polynomial-time algorithm of Sec-
tion 3, with the maximin objective function.3 As noted above, it has been deployed on
Spliddit since April 2015.

The remainder of the paper focuses on demonstrating that the foregoing approach is
indeed effective, via theory and experiments. Here our contribution is twofold. First,
we show — in Section 5 — that when values are drawn from a uniform Dirichlet dis-
tribution, and there are two or three players (the most common cases on Spliddit), the
expected difference between the worst and best envy-free solutions in terms of dispar-
ity is significant. This means that, in theory, there is scope for significant improvement
according to the equitability criterion. But do we also see an improvement in practice?
We answer this question in the positive using Spliddit data. Indeed, we show that
real-world instances give rise to significant differences, according to both the maximin
and equitability objectives, between the maximin solution (which optimizes both ob-
jectives simultaneously) and an arbitrary envy-free solution (which does not attempt
to optimize either objective).

Second, we report results from a user study, which has been a long time in the mak-
ing. We contacted Spliddit users, and asked them to compare two solutions: the max-
imin solution, and an arbitrary envy-free solution. Crucially, the two solutions were
computed on each user’s actual Spliddit instance (the values of other tenants were
perturbed to preserve privacy). Subjects were asked to subjectively rate the solutions
in terms of fairness to themselves, and fairness to others. The results show a signifi-
cant advantage for the maximin solution in both questions, thereby demonstrating the

2It is interesting to note that, even though the instances on Spliddit are small, computational tractability
does play a key role, as there are many instances and computation incurs a cost (Spliddit uses Amazon Web
Services to run all its algorithms).
3To be completely precise, the algorithm deployed on Spliddit first tries to maximize the minimum utility,
subject to envy freeness as well as an additional constraint: prices must be non-negative. If an envy-free
solution with non-negative prices does not exist [Brams and Kilgour 2001], it removes the non-negative
price constraint (in which case a solution always exists). Most of our results go through even when prices
are assumed to be non-negative. In any case, real-world instances where negative prices actually help are
extremely rare, so throughout the paper prices are unconstrained.
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added value of optimization and supporting the decision to use the maximin solution
on Spliddit.

1.3. Related Work
The papers by Alkan et al. [1991] and Aragones [1995] are the most closely related
to our work. Alkan et al. [1991] study the more general problem of allocating goods
and dividing money. They start by proving the existence of envy-free solutions in
this setting, but, like us, they ultimately employ criteria of justice in order to find
the “best” envy-free solutions. They are especially interested in the maximin solution,
which they call the value-Rawlsian solution; and the solution that maximizes the min-
imum amount of money allocated to any player, subject to envy freeness, which they
call the money-Rawlsian solution. They show that the maximin solution is unique, as
are a number of less attractive solutions (minimize the maximum utility, maximize the
utility of one particular player). Finally, they show that these criteria imply solutions
with a monotonicity property: if the amount of money is increased, the utility of all
players is strictly higher (this property is moot in our setting). Alkan et al. [1991] do
not provide algorithmic results.

Aragones [1995] designs a polynomial-time algorithm for computing the money-
Rawlsian solution of Alkan et al. [1991]. Her combinatorial algorithm does not extend
to other criteria. In contrast, our LP-based framework is significantly more general,
and, in particular, allows us to compute the maximin solution (which we view as the
most attractive) in polynomial time. Our algorithmic approach is also much simpler.
It is worth noting that Klijn [2000] gives a different polynomial-time algorithm for
computing envy-free solutions, without guaranteeing any additional properties (other
than being extreme points of a certain polytope).

There are (at least) three marketlike mechanisms for computing solutions for the
rent division problem assuming quasi-linear utilities, by Brams and Kilgour [2001],
Haake et al. [2002], and Abdulkadiroğlu et al. [2004]. All three do not consider op-
timization criteria; in the case of the mechanism of Brams and Kilgour [2001], the
solution may not be envy free. As mentioned above, the mechanism of Abdulkadiroğlu
et al. [2004] was deployed on Spliddit until April 2015.

One fundamentally different approach to rent division that we would like to discuss
in more detail is that of Su [1999]. He does not assume quasi-linear utilities; rather, his
main assumption is that a player would always prefer getting a free room to getting
another room at a positive price (the so-called miserly tenants assumption). Under
this assumption, Su designs an algorithm that converges to an (approximately) envy-
free solution, by iteratively querying players about their favorite room at given prices.
While eschewing the quasi-linear utilities assumption is compelling, a (crucial, in our
view) disadvantage of this approach is that preference elicitation is very cumbersome.
Interestingly, Su’s method was implemented by the New York Times.4

Relatively few papers explore fair allocations among people in lab settings, and there
is inconclusive evidence about the types of solution criteria that are favored by peo-
ple. Dupuis-Roy and Gosselin [2011] report that fair division algorithms were rated
less desirable than imperfect allocations that did not employ any fairness criterion,
while Schneider and Krämer [2004] find that subjects preferred envy-free solutions
to a divide-and-choose method that does not guarantee envy-freeness. Herreiner and
Puppe [2009, 2010] find that envy-freeness was a dominant factor in the allocations
favored by subjects, but that it was a secondary criterion to Pareto optimality or in-
equality minimizing allocations. Kohler [2013] proposes an equilibrium strategy for
repeated negotiation that incorporates fairness and envy concerns. In all of these pa-

4http://goo.gl/Xp3omV. This article also discusses the then-under-construction Spliddit.
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pers, the studies were conducted in a controlled lab setting in which subjects’ valua-
tions over goods were imposed on the subjects, or the goods to be allocated were chosen
by the experimenters themselves.

2. THE MODEL
We are interested in rent division problems involving a set of players [n] = {1, . . . , n},
and a set of rooms [n]. Each player i has a non-negative value vij ∈ R+ for each room j.
We assume without loss of generality that the total rent is 1, and also assume (with loss
of generality) that for all i ∈ [n],

∑n
j=1 vij = 1. We can therefore represent an instance

of the rent division problem as a right stochastic (rows sum to 1) matrix V ∈Mn×n(R+).
An assignment of the rooms is a permutation σ : [n] → [n], where σ(i) is the room

assigned to player i. The division of rent is represented through a vector of (possibly
negative) prices p ∈ Rn such that

∑n
i=1 pi = 1; pj is the price of room j.

Given a solution (σ,p) for a rent division problem V , the quasi-linear utility of player
i is denoted ui(σ,p) = viσ(i) − pσ(i). A solution is envy free (EF) if the utility of each
player for her room is at least as high as any other room. Formally, (σ,p) is EF if and
only if

∀i, j ∈ [n], viσ(i) − pσ(i) ≥ vij − pj . (1)

3. COMPUTATION OF OPTIMAL ENVY-FREE SOLUTIONS
As noted above, it is possible to compute an envy-free solution to a given rent division
problem in polynomial time [Aragones 1995]. We are interested in choosing among
envy-free allocations by optimizing an objective function, subject to the envy-freeness
constraint. Our goal in this section is to show that this can be done in polynomial time,
when the objective function is the minimum of linear functions of the utilities.

THEOREM 3.1. Let f1, . . . , ft : Rn → R be linear functions, where t is polynomial
in n. Given a rent division instance V , a solution (σ,p) that maximizes the minimum
of fq(u1(σ,p), . . . , un(σ,p)) over all q ∈ [t] subject to envy freeness can be computed in
polynomial time.

Natural examples of objective functions of the form specified in the theorem are max-
imizing the minimum utility, and minimizing the maximum difference in utilities; we
discuss these objectives in detail in Section 4. The former objective can be directly cap-
tured by setting t = n, and fi(u1(σ,p), . . . , un(σ,p)) = ui(σ,p) for all i ∈ [n]. The latter
criterion is also captured by setting t = n2 and fij(u1(σ,p), . . . , un(σ,p)) = ui(σ,p) −
uj(σ,p). Indeed, mini,j∈[n] fij(u1(σ,p), . . . , un(σ,p)) = −maxi,j∈[n]{ui(σ,p) − uj(σ,p)},
so maximizing the minimum of these linear functions is equivalent to minimizing the
maximum difference in utilities.

Our polynomial-time algorithm relies on a connection between envy-free rent divi-
sion and the concept of Walrasian equilibrium. To understand this connection, imagine
a more general setting where a set of buyers [n] are interested in purchasing bundles of
goodsG; here, each buyer i has a valuation function vi : 2G → R, assigning a value vi(S)
to every bundle of goods. A Walrasian equilibrium is an allocation A = (A1, . . . , An) of
the goods to buyers (where Ai ⊆ G is the bundle given to buyer i), coupled with a
price vector p that assigns a price to each good, such that each player receives the best
bundle of goods that she can buy for the price p; formally:

∀i ∈ [n], S ⊆ G, vi(Ai)− p(Ai) ≥ vi(S)− p(S). (2)

We say that an allocation A is welfare-maximizing if it maximizes
∑n
i=1 vi(Ai). The

following properties of Walrasian equilibria are well known; see, e.g., the book of Mas-
Colell et al. [1995, Chapter 16].
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THEOREM 3.2 (1ST WELFARE THEOREM). If (A,p) is a Walrasian equilibrium,
then A is a welfare-maximizing allocation.

THEOREM 3.3 (2ND WELFARE THEOREM). If (A,p) is a Walrasian equilibrium,
and A′ is a welfare-maximizing allocation, then (A′,p) is a Walrasian equilibrium as
well. Furthermore, vi(Ai)− p(Ai) = vi(A

′
i)− p(A′i) for all i ∈ [n].

Now, an EF solution in the rent division setting is a Walrasian equilibrium in the
setting where the goods are the rooms, and the valuation function of each player for
a subset S ⊆ [n] of rooms is given by vi(S) = maxj∈S vij (these are unit demand
valuations) — it is easily seen that Equation (1) coincides with Equation (2) in this
case. This means that we can apply the welfare theorems to EF allocations. For exam-
ple, we can immediately deduce a simple result of Svensson [1983]: any EF solution
(σ,p) is Pareto efficient, in the sense that there is no other solution (σ′,p′) such that
ui(σ

′,p′) ≥ ui(σ,p) for all i ∈ [n], with strict inequality for at least one i ∈ [n]. To
see this, note that σ is welfare-maximizing by Theorem 3.2, and the sum of prices is 1
under both p and p′.

We are now ready to present our polynomial-time algorithm for maximizing the min-
imum of linear functions f1, . . . , ft of the utilities, subject to EF; it is given as Algo-
rithm 1.

ALGORITHM 1:
(1) Let σ ∈ argmaxπ{

∑n
i=1 viπ(i)} be a welfare-maximizing assignment

(2) Compute a price vector p by solving the linear program

max R
s.t.: R ≤ fq(v1σ(1) − pσ(1), . . . , vnσ(n) − pσ(n)) ∀q ∈ [t]

viσ(i) − pσ(i) ≥ vij − pj ∀i, j ∈ [n]
n∑
j=1

pj = 1

The algorithm starts by computing a welfare-maximizing assignment σ of players
to rooms; this can be done in polynomial time, as this task reduces to the maximum
weight bipartite matching problem, with players on one side of the graph, rooms on
the other, and a weight vij on each edge (i, j). It then solves (in polynomial time) a lin-
ear program, with variables p1, . . . , pn, which computes optimal envy-free prices with
respect to σ. The first constraint sets (in an optimal solution) the objective R to the min-
imum of the linear functions fq(·). Envy-freeness is enforced by the second constraint,
and the third constraint guarantees that the prices sum to 1.

However, it may not be immediately clear why starting from an arbitrary welfare-
maximizing assignment allows us to compute the optimal solution subject to envy-
freeness. This is formally established in the proof below.

PROOF OF THEOREM 3.1. Let (σ∗,p∗) be the solution that maximizes the minimum
of f1(·), . . . , ft(·) subject to EF. Furthermore, let σ be the welfare-maximizing alloca-
tion computed in the first step of Algorithm 1. By Theorem 3.3, (σ,p∗) is such that
ui(σ,p

∗) = ui(σ
∗,p∗) for all i ∈ N . In particular, (σ,p∗) is EF, and

min
q∈[t]

fq(u1(σ,p∗), . . . , un(σ,p∗)) = min
q∈[t]

fq(u1(σ∗,p∗), . . . , un(σ∗,p∗)). (3)
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Because p∗ is a feasible solution to the linear program, we have that its optimal solu-
tion p satisfies

min
q∈[t]

fq(u1(σ,p), . . . , un(σ,p)) ≥ min
q∈[t]

fq(u1(σ,p∗), . . . , un(σ,p∗)). (4)

Putting Equations (3) and (4) together, we see that we must have equality in (4), and
that (σ,p) is an optimal envy-free solution.

4. RELATIONS BETWEEN THE FAIREST SOLUTIONS
Algorithm 1 allows us to maximize the minimum of linear functions of the utilities,
subject to EF, in polynomial time. With the potential computational barrier out of the
way, we would like to understand which optimization objective to use. Specifically, we
focus on two natural optimization objectives, and evaluate their properties.

We refer to the first objective as equitability. Let EF (V ) be the set of all EF outcomes
for V . Given an outcome (σ,p) ∈ EF (V ), we define D(σ,p) as the difference between
the utilities of the happiest player and the worst off player under the outcome (σ,p),
that is,

D(σ,p) = max
i,j∈N

{ui(σ,p)− uj(σ,p)}.

In more general terms, the functionD measures the social disparity under the outcome
(σ,p); we would like to minimize this quantity. An outcome (σ∗,p∗) is called equitable
if it minimizes D over EF (V ), i.e.,

(σ∗,p∗) ∈ arg min{D(σ,p) | (σ,p) ∈ EF (V )}.
Herreiner and Puppe [2009] demonstrate via experiments with human subjects that
equitability is of great importance in determining whether an allocation is perceived
to be fair by people.

Alternatively, instead of minimizing social disparity, one might be interested in max-
imizing the utility of the worst off player. More formally, given an EF solution (σ,p),
we let U(σ,p) = mini∈N ui(σ,p); if

(σ∗,p∗) ∈ arg max{U(σ,p) | (σ,p) ∈ EF (V )} (5)

then we say that (σ∗,p∗) is a maximin solution.
Alkan et al. [1991] argue that the maximin solution — which they call the value-

Rawlsian solution — is compelling on philosophical grounds. Mathematically, they
demonstrate that the maximin solution is associated with a unique vector of utilities,
making this solution even more appealing.

The fact that equitable and maximin allocations are constrained to be EF again
allows us to employ the Second Welfare Theorem (Theorem 3.3) to great effect. Indeed,
if (σ∗,p∗) is equitable (resp., maximin), and σ′ is a welfare-maximizing assignment,
then (σ′,p∗) is equitable (resp., maximin). Therefore, hereinafter we assume without
loss of generality that the identity assignment σ(i) = i is welfare maximizing, and
simply use D(p) or U(p) to refer to these measures under the identity assignment. In
particular, we can talk about equitable or maximin vectors of prices with respect to the
identity assignment.

At first glance, the equitability and maximin criteria seem equally appealing. Which
one leads to fairer solutions? The next theorem shows that we do not have to choose —
the maximin solution is equitable.

THEOREM 4.1. If p∗ is a maximin vector of prices, then it is also equitable.

PROOF. Given an EF vector of prices p, it will be useful to think of the following
graph Γ(p) = ([n], E); the nodes in Γ(p) are the players, and there is a directed edge
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from i to j if i weakly envies j — that is, vii − pi = vij − pj (recall that we are assum-
ing the identity assignment). We say that i is poor if i has minimum utility under p;
similarly, a player i is called rich if i has maximum utility under p.

We first claim that if p∗ is a maximin rent division, then every non-poor player i has
a path to a poor player in Γ(p∗). Indeed, assume for contradiction that this is not the
case, and let T ∗ be the set of all players that have no path to poor players under Γ(p∗);
by assumption, T ∗ 6= ∅, and [n] \ T ∗ 6= ∅ as well ([n] \ T ∗ contains, at the very least, the
poor players, who have a path of length 0 to themselves). Let us observe the vector of
prices q defined as follows:

qi =

{
pi + ε i ∈ T ∗

pi − |T∗|ε
n−|T∗| i ∈ [n] \ T ∗

Here, ε is a very small constant, which is in particular smaller than min{ui(id,p∗) −
uj(id,p

∗) | ui(id,p∗) > uj(id,p
∗)}. Let i, j ∈ [n] such that i weakly envies j under p∗. If

i, j ∈ T ∗ or i, j ∈ [n] \ T ∗ then i still weakly envies j: their prices changed by the same
amount. If i belongs to T ∗ then j cannot belong to [n] \ T ∗, otherwise there would be a
path from i to some poor player, a contradiction to the definition of T ∗. If i belongs to
[n] \ T ∗ and j belongs to T ∗ then i enjoyed a decrease in rent, whereas j suffered an
increase, so i does not envy j under q. We conclude that q is envy free, by our choice of
ε. However, because [n] \ T ∗ includes all poor players, the minimum utility under q is
strictly higher than under p∗, a contradiction to p∗ being a maximin EF rent division.

Next, let q∗ be an equitable EF price vector. Suppose for contradiction that D(p∗) >
D(q∗). If all players have the same utility under p∗ then D(p∗) = 0 ≤ D(q∗) which is
impossible. Hence there must be some rich players that are not poor under p∗.

We write ε = U(p∗) − U(q∗); since p∗ is a maximin EF rent division, ε ≥ 0. This
means that every poor player under p∗ could have had their utility decreased by at
most ε. In other words, if i is a poor player under p∗, then q∗i − p∗i ≤ ε. Moreover, since
D(p∗) > D(q∗) by assumption, it must be the case that the rich players under p∗ had
their utility decreased by strictly more than ε; this is because if i is a rich player then

ui(id ,p
∗)− min

j∈[n]
uj(id ,p

∗) > max
j∈[n]

uj(id ,q
∗)− min

j∈[n]
uj(id ,q

∗),

and therefore ui(id ,p
∗) > maxj∈[n] uj(id ,q

∗) + ε, which implies that ui(id ,p
∗) >

ui(id ,q
∗) + ε, or, equivalently, q∗i − p∗i > ε.

We know that there is a path from at least one rich player (who is not poor) to at
least one poor player in Γ(p∗). In particular, there must be an edge (i, j) on that path
such that q∗i − p∗i > q∗j − p∗j . By the definition of Γ(p∗), vii − p∗i = vij − p∗j . It follows that

vii − q∗i = vii − p∗i + (p∗i − q∗i ) < vij − p∗j + (p∗j − q∗j ) = vij − q∗j ,
contradicting the envy freeness of q∗.

In contrast, an equitable solution may not be maximin, as the following example
shows.

Example 4.2 (An equitable solution that is not maximin). This example is particu-
larly appealing, as it is a real-world instance submitted by Spliddit users.(

2227 708 0
258 1378 1299
1000 1000 935

)
Note that the total rent is $2935. The optimal room assignment gives room i to

player i; the maximin rent division is p∗ = (18131
3 , 600 1

3 , 521 1
3 ), with a utility vector
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of u1(id,p∗) = 4132
3 , u2(id,p∗) = 777 2

3 , u3(id,p∗) = 413 2
3 . We have D(p∗) = 777 2

3 −
413 2

3 = 364, and by Theorem 4.1 any solution that has the same disparity is equitable.
However, the price vector p′ = (1570 2

3 , 721 2
3 , 642 2

3 ) is an EF rent division resulting in
u1(id,p′) = 656 1

3 , u2(id,p′) = 656 1
3 , u3(id,p′) = 292 1

3 , and D(p′) = 656 1
3 − 292 1

3 = 364
as well, that is, it is equitable, but the minimum utility is (much) smaller than that
under p∗.

Let us now discuss a third optimization objective, the money-Rawlsian solution,
which is mentioned by Alkan et al. [1991], and implemented in polynomial time by
Aragones [1995]. The latter author describes the following procedure for finding EF
solutions. Begin by finding a welfare-maximizing assignment of rooms (again, assume
without loss of generality that room i goes to player i); next, find a vector q∗ ∈ Rn+
of non-negative values such that vii + q∗i ≥ vij + q∗j and Q∗ =

∑n
i=1 q

∗
i is minimized.

That is, each player i pays a value of −q∗i . Next, increase the prices of all players by a
quantity α such that nα−Q∗ = 1, i.e. the vector (α, . . . , α)− q∗ is a valid price vector.

While the money-Rawlsian solution is interesting, it may be “maximally unfair” in
terms of disparity, as the following example shows.

Example 4.3 (The money-Rawlsian solution may maximize disparity). We analyze
the following rent division instance:

V =

(
1 0
1
2

1
2

)
The welfare-maximizing assignment allocates room i to player i, and q∗ = (0, . . . , 0).
A uniform increase in rent will ensue, resulting in the price vector (1/2, 1/2) and the
utility vector (1/2, 0). Crucially, the money-Rawlsian price vector maximizes disparity
among all EF solutions. Note that the maximin price vector is (3/4, 1/4), which, of
course, minimizes disparity.

To conclude, so far we know that the maximin solution, the equitable solution, and
the money-Rawlsian solution can be computed in polynomial time. Moreover, Theo-
rem 4.1 shows that the maximin solution, which by definition maximizes the minimum
utility, also minimizes disparity (among all EF solutions) — so it is a refinement of the
equitable solution. In stark contrast, the money-Rawlsian solution may maximize dis-
parity (among all EF solutions). We therefore view the maximin solution as the clear
choice, and focus on analyzing its effectiveness hereinafter.

5. ON THE IMPORTANCE OF BEING EQUITABLE
Our goal in this section is to understand how much better the maximin solution is, in
terms of the maximin and disparity objectives, compared to suboptimal solutions on
average. In Section 5.1 we show that the expected gain in terms of reducing disparity
is significant in a formal probabilistic model. For this theoretical analysis, we focus on
the cases of two and three players, which are the most common on Spliddit. We also
focus on the equitability criterion, but the same ideas can be applied to the maximin
criterion. In Section 5.2 we conduct an empirical analysis, showing significant gains in
both of our primary objective functions on real data from Spliddit.

5.1. The Benefit Is Significant in Theory
Given an n player rent division problem, let D+(V ) = maxp∈EF(V )D(p), and D∗(V ) =

minp∈EF(V )D(p); that is, D+(V ) is the highest utility difference between the best and
worst-off players under the disparity maximizing EF solution, whereas D∗(V ) is the
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difference between the best and worst-off players under the equitable solution dis-
cussed earlier. In order to establish the potential impact of minimizing disparity, we
would like to show that instances where the difference D+(V ) − D∗(V ) is significant
are a common occurrence.

More formally, we are interested in computing EV∼µ[D+(V ) − D∗(V )] for rent divi-
sion instances sampled from some distribution µ over n player rent division instances.
In our theoretical results below, we use the uniform Dirichlet distribution over each
player’s values for the n rooms. In more detail, each i ∈ [n] chooses a valuation profile
uniformly at random from the n − 1 dimensional simplex. Such uniform distributions
can be generated as follows: let X1, . . . , Xn−1 ∼ U [0, 1] be independent uniform random
variables on [0, 1], and let X(1) ≤ · · · ≤ X(n−1) be the variables sorted according to their
order statistics; then the vector v = (X1, X(2) − X(1), . . . , X(n−1) − X(n−2), 1 − X(n−1))
corresponds to a sample from the uniform Dirichlet distribution.

The two player case. Let us start with the setting where there are only two players.
In that case, a valuation matrix can be written as(

v1 1− v1
v2 1− v2

)
where v1, v2 ∈ [0, 1]. To draw a random instance, we simply need to draw v1, v2 ∼ U [0, 1].
We use two lemmas to exactly calculate EV∼µ[D+(V )−D∗(V )].

LEMMA 5.1. Let n = 2. Then there exists an EF price vector p− such thatD(p−) = 0.

PROOF. We again assume that the identity assignment is welfare maximizing.
Given a price vector (p1, p2), the player utilities are v1 − p1 and 1 − v2 − p2; setting
p2 = 1− p1 and solving for v1 − p1 = 1− v2 − p2 yields p1 = v1+v2

2 .
It remains to make sure that this solution is indeed envy free. Under this price

vector we have that player 1’s utility from room 1 is v1−v2
2 , and her utility from room 2

is 1− v1 − (1− v1+v2
2 ) = v2−v1

2 . Now, if player 1 envies player 2, then v1 < v2, in which
case allocating room i to player i is not a welfare-maximizing assignment. To see this,
note that

v1 + 1− v2 ≥ v2 + 1− v1 ⇐⇒ v1 ≥ v2.
Thus, under this price vector, player 1 does not envy player 2. Now, player 2’s utility
from room 2 is v1−v2

2 , and her utility from room 1 is v2 − v1+v2
2 = v2−v1

2 , which is not
more than her utility from her own room as previously argued.

To conclude, p− = (v1+v22 , 1− v1+v2
2 ) is an EF price vector for which D(p−) = 0.

LEMMA 5.2. Given a 2 player rent division instance

V =

(
v1 1− v1
v2 1− v2

)
,

it holds that D+(V ) = |v1 − v2|.
PROOF. Suppose that v1 ≥ v2 (the case of v1 < v2 is handled similarly). In this case,

we can assume that room i is assigned to player i. A price vector (p1, p2) is EF if and
only if v2 ≤ p1 ≤ v1. Since D(p) is the maximum of linear functions, its maxima occur
on vertices of the polyhedron of EF rent divisions. Thus, the maximum difference in
player utilities must occur when p1 equals either v1 or v2. Note that u1(v1, 1 − v1) =
0, u2(v1, 1− v1) = v1 − v2, and u1(v2, 1− v2) = v1 − v2, u2(v2, 1− v2) = 0. Thus, in either
case D+(V ) = v1 − v2.

Therefore, in order to estimate E[D+(V )−D∗(V )] in the two player case, we simply need
to calculate E[|v1 − v2|], which is clearly 1/3. We include the proof for completeness.
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THEOREM 5.3. Let

V =

(
v1 1− v1
v2 1− v2

)
be a 2 player rent division instance, where v1, v2 ∼ U(0, 1); then E[D+(V )−D∗(V )] = 1

3 .

PROOF. According to Lemmas 5.1 and 5.2, D+(V ) = |v1 − v2| and D∗(V ) = 0. Thus
we need to calculate

E[D+(V )] = E[|v1 − v2|] =

∫ 1

0

∫ 1

0

|v1 − v2| dv2dv1 = 2

∫ 1

0

∫ v1

0

(v1 − v2) dv2dv1

= 2

∫ 1

0

1

2
(v1)2 dv1 =

1

3
,

where the third equality follows from symmetry between v1 and v2.

Three Players, and Beyond. We now proceed to tackle the 3 player rent division case,
in the foregoing regime. While our results for this case are not nearly as tight as for
the case of two players, we provide an in-depth analysis of an interesting class of three
player rent division instances. This class includes instances where all players mostly
agree on the value of one room, but disagree on the values of the other two.

More formally, let C∗(ε) be the class of 3 player rent division instances that satisfy
the following property: there exists some room j for which |vij−vkj | ≤ ε for all i, k ∈ [n],
but |vi` − vk`| ≥ 2ε for all ` ∈ [n] \ {j} and all i ∈ [n], k ∈ [n] \ {i}. The next lemma —
whose proof is given in the appendix — shows that if a rent division instance V is in
C∗(ε), then V allows for an extremely equitable EF solution, where each player has
utility of nearly (

∑
i vii − 1)/3; however, it also admits an EF solution where one of the

players has utility 0 — the worst possible outcome.

LEMMA 5.4. If V ∈ C∗(ε), then there exist EF price vectors p+ and p− such that
U(p−) ≥

∑
i vii−1
3 − 2

3ε, but U(p+) = 0. Moreover, D∗(V ) ≤ ε, but D+(V ) ≥ 2ε.

By proving a lower bound on the probability that rent division instances belong to
C∗(ε), we can establish the following theorem, whose proof appears in the appendix.

THEOREM 5.5. Let V be a 3 player rent division instance drawn from the uniform
Dirichlet distribution; then for any ε < 1/5,

Pr[D+(V )−D∗(V ) ≥ ε] ≥ 15189

5
ε6 − 4560ε5 + 1902ε4 − 312ε3 + 18ε2.

For example, Theorem 5.5 implies that with probability at least 0.019,D+(V )−D∗(V ) ≥
0.07 (which is 7% of the total rent). With smaller probability of roughly 0.00024, the
difference is huge — almost 20% of the total rent.

In contrast, it is intuitive that as n grows, we cannot expect the difference in dis-
parity to remain bounded away from zero. The reason is that for any fixed ε > 0, it is
likely that all players agree on the values of all rooms up to ε; that is, |vik − vjk| < ε
for all i, j, k ∈ [n] with high probability. This property guarantees that near equitabil-
ity holds for all EF rent divisions. Indeed, when all players agree on all values up to
ε, choosing different EF price vectors causes little difference in players’ utilities; in a
sense, there is very little “wiggle room” due to players’ utility vectors being so similar
to one another. Formally:

LEMMA 5.6. If V is such that |vik − vjk| < ε for all i, j, k ∈ [n], then D(p) ≤ ε for all
EF payment vectors p.
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PROOF. Assume again that room i is allocated to player i. If p is EF, then vii − pi ≥
vij − pj , and vjj − pj ≥ vji − pi for all i, j ∈ [n]. Since the values are within ε of each
other, we have that vii − pi ≥ vjj − pj − ε; similarly, we have that vjj − pj ≥ vii − pi − ε.
Thus, |ui(id,p)− uj(id,p)| ≤ ε.

Now it remains to show that values are indeed likely to be close to each other.

THEOREM 5.7. For any ε = ε(n) = 1
o(n) , limn→∞ Pr[D+(V ) < ε] = 1.

PROOF. By Lemma 5.6, it is sufficient to prove that

lim
n→∞

Pr[∀i, j, k ∈ [n], |vij − vik| < ε] = 1.

Observe that the probability that player i evaluates room 1 at least at ε is exactly
(1 − ε)n−1. By symmetry, this is true for any room j ∈ [n]. Taking a union bound over
all players and rooms, we obtain that Pr[∃i, j ∈ [n] s.t. vij ≥ ε] ≤ n2(1− ε)n−1. However,
for ε = 1/o(n), we have that limn→∞ n2(1− ε)n−1 = 0.

5.2. The Benefit Is Significant in Practice
Above we analytically established the potential for significantly reducing disparity
by using the maximin solution. In the remainder of the section we demonstrate the
practical benefit of the maximin solution with respect to real-world instances that were
submitted by Spliddit users.

In our empirical results, we compare the maximin solution to an arbitrary EF solu-
tion, which is obtained by solving a feasibility linear program without an optimization
objective. In contrast, the theoretical analysis compares the maximin solution to the
worst EF solution. We note that similar empirical results are obtained when comparing
the maximin solution to the algorithm of Abdulkadiroğlu et al. [2004].

The comparison is in terms of both of our main objectives, D and U (which are si-
multaneously optimized by the maximin solution). We expected that D would be sig-
nificantly lower, and U significantly higher, in the maximin solution compared to an
arbitrary EF solution.

We focus our analysis on 1,358 rent division instances involving 3,682 players, which
were submitted on Spliddit between January 2015 and December 2015. The number
of instances for each number of players 2, 3, 4, 5, 6, 7, 8, 9 is 698, 445, 160, 35, 9, 8, 1,
2, respectively. We only use instances that include two, three or four players, for which
we have at least 160 instances in the database and for which obtaining statistical sig-
nificance was possible. Importantly, note that this is a small subset of the 13,277 rent
division instances created by Spliddit users; this is because we selected instances very
conservatively, to ensure the ecological validity of our analysis. For example, Spliddit
allows a “live demo” mode of interaction, and we excluded instances created that way.

To illustrate users’ values for rooms in the Spliddit dataset, we present Figure 1,
which visualizes the distribution for 2-player instances. The x axis shows the value of
player 1 for room 1, and the y axis shows the value of player 2 for room 1. The total
rent is normalized to $1, so each player’s value for room 2 is simply the complement
of the displayed value; that is, the point (x, y) corresponds to an instance where the
values of player 1 are (x, 1− x), and those of player 2 are (y, 1− y). The diagonal from
points (0, 0) to (1, 1) represents the points in which players completely agree on the
rooms’ values. We color each instance according to its distance from this line, using
shades of red for shorter distances, and shades of blue for longer distances.

The figure reveals several interesting phenomena. First, there is a significant cluster
of instances which is centered on or close to the (0.5, 0.5) mark, implying that both
players are indifferent between the two rooms. Second, we see a “cross” centered at
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Fig. 1: The distribution of values for two player Spliddit instances (normalized to a
total rent of $1).

the (0.5, 0.5) point, in which one of the players is indifferent, while the other player
prefers one of the two rooms. Third, there are some instances in which one or both of
the players are obstinate (i.e., x ∈ {0, 1} or y ∈ {0, 1}), that is, they desire a specific
room at any cost.

Let us now turn to the comparison we promised above. Given a rent division in-
stance V , let p∗ denote the price vector associated with the maximin solution, and pEF

denote the price vector associated with an arbitrary EF solution, as discussed earlier.
As before, we let D(p) and U(p) denote the social disparity and utility of the worst-off
player under price vector p (assuming a welfare-maximizing assignment of players to
rooms). The improvement in social disparity D from using the maximin price vector
over the EF vector is defined as D(pEF ) − D(p∗), and the improvement in the utility
of the worst-off player U from using the maximin price vector over the EF vector is
defined as U(p∗)− U(pEF ).

Figure 2 shows the percentage of improvement out of the total rent in D and U . As
shown by the figure, for n = 2, 3, 4, the disparity associated with the maximin outcome
is significantly lower than that of the EF outcome (9% of the total rent on average), and
the utility of the worst-off player associated with the maximin outcome is significantly
higher than that of the EF outcome (4% of the total rent on average). This trend is
exhibited with respect to each value of n.

We note the following points. First, the degree of improvement in both D and U
becomes smaller as the number of players grows, which is in the same spirit as the
results of Section 5.1. However, even in cases where the improvement is relatively
small, it still makes a qualitative difference, for example, when the maximin solution
achieves zero disparity, and the arbitrary EF solution achieves strictly positive dis-
parity (we discuss this fact in the next section). In addition, as noted above, the vast
majority of Spliddit instances include two or three players, for which the improvement
in D and U is higher than four players. Lastly, although this is not shown in the figure,
an improvement in both D and U occurs in over 90% of the instances, for n ∈ {2, 3, 4}.

6. USER STUDY
In the previous sections, we established, both theoretically and empirically, the bene-
fits of the maximin approach to computing envy-free solutions for rent division prob-
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Fig. 2: Average percentage of improvement (out of the total rent) in social disparity D
and utility of the worst-off player U when using the price vector associated with the
maximin solution, compared to an arbitrary EF solution, on Spliddit instances.

lems. The question addressed by this section is, are people willing to accept such solu-
tions in practice? To answer this question, we conducted the following user study.

6.1. Study Design
People who used the Spliddit service during the year 2015 were invited (via email) to
participate in a short study to evaluate the new allocation method. We targeted users
who participated in rent division instances on Spliddit that included 2, 3 or 4 players.
In order to use Spliddit one need not supply an email address; users can opt to send
out URLs to other users, which is what the vast majority of users choose to do. We only
contacted users who supplied their email address — a relatively small subset of the
users who were involved in rent division instances.

All participants were given a $10 compensation that did not depend on their re-
sponses. In total, the invitation email was sent to 344 Spliddit users, of which 46 users
(13%) chose to participate. The study was approved by the Institutional Review Board
(IRB) of Carnegie Mellon University.

The study followed a within-subject design, by which each of the subjects was shown,
in random order, an arbitrary EF solution (as discussed in Section 5.2) and the max-
imin solution, applied to their original problem instance.

Importantly, we wished to preserve the privacy of players regarding their evalua-
tions over the different rooms. Therefore, each player that participated in the study
was shown a slightly modified version of their own rent division problem. Information
that was already known to each subject was identical to the original Spliddit instance,
including the total rent, the number of rooms, their names, the subject’s own values
for the different rooms, and the allocation of the rooms to the players. Information that
was perturbed to preserve the privacy of the other players included their names, which
were changed to “Alice”, “Bob” or “Claire”, depending on whether there were 2, 3, or
4 players; and the other players’ valuations, which were randomly increased or de-
creased by a value of up to 15% under the constraint that the total rent is unchanged,
and that player valuations are still valid (non-negative and sum to the total rent).

Figure 3 shows an example of the arbitrary EF allocation for one of the instances in
the study, from the perspective of a player called Hugo. The allocation of Hugo (room
Verde, utility=$21) is shown in the “window” at the right-hand side of the “house”. The
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Room: Azul 

Room: Naranja 

Room: Verde 

Room Azul assigned to Claire, 
With Benefit= $1721 − $896 = $825 

Room Naranja assigned to Bob, 
With Benefit= $2908 − $2722 = $186 

Hugo Bob Claire 

$854 $896 
$1721 

$1082 

Hugo Bob Claire 

$2743 $2722 $2154 
$2908 

Hugo Bob Claire 

$2403 $2382 $2124 $2010 

Room Verde assigned to Hugo, 
With Benefit= $1403 − $2382 = $21 

Fig. 3: A visualization of a problem instance in the user study (from the point of view
of a tenant named Hugo).

value of this room for each of the players is displayed using a bar graph, with Hugo’s
own value highlighted via the green bar. The price paid by Hugo for room Verde ($2382)
is visualized as a horizontal line “cutting” through the value bars of the players. This
provides a vivid graphical description of the values and utilities of the players for this
room, and makes it easy for participants to reason about fairness properties relating
to the proposed solution. For example, it is easy to see that none of the other players
envies room Verde for the proposed price. The other windows in the house show the
allocations of the players Alice and Bob in a similar way.

The subjects were shown the two solutions — maximin and arbitrary EF — for the
instance presented to them. Both solutions include the same room allocation, but pos-
sibly differ in the prices paid by the players. The two solution outcomes were shown in
sequence, and in random order. For example, the maximin solution for the rent division
instance shown in Figure 3 provides the same room assignment as the EF outcome, but
the utility of all players is $344 (compared to utilities of $21 for Hugo, $825 for Claire,
and $186 for Alice under the arbitrary EF outcome). Note that the disparity under the
maximin solution is zero in this example, which was also the case in many of the other
instances included in the study (see below).

The subjects were asked to rate two different aspects of each of the two solutions
on a scale from 1 to 5, with 1 being least satisfied and 5 being most satisfied. The two
aspects are the subject’s individual allocation, and the allocations of the other players.
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Fig. 4: Results of the user study.

The two questions were phrased as follows (using the rent division instance of Figure 3
for illustration purposes):

(Individual). “This question relates to your own allocation. In other words, we
would like you to pay attention only to your own benefit. How happy are you with
getting the room called Verde for $2,382?”
(Others). “This question relates to the allocation for everyone else. How fair do you
rate the allocation for Bob and Claire?”

In both questions, players were able to write an argument or justification for their
rating. To cancel order effects, the two questions were presented in random order.

6.2. Results
We hypothesized that players would rate their own allocation under the maximin solu-
tion significantly higher than under the EF outcome, and similarly for the allocation of
the other participants. Figure 4 shows the results of the user study. For each number
of players (2,3,4) we show the average satisfaction level reported for the arbitrary EF
solution and maximin solution when relating to each player’s individual outcome (left
chart), and others’ outcomes (right chart). In all cases, the maximin solution is rated
significantly higher than the envy-free solution for both questions, passing a Wilcoxon
signed-rank test with p < 0.04.

Anecdotally, based on textual feedback, subjects had a good understanding of the
experiment. As an example, on the instance of Figure 3, the subject identified as Hugo
wrote regarding his own outcome: “It looks like I am overpaying.” And for the allocation
of the other players: “They both get much more benefit.”

Why did players overwhelmingly prefer the prices from the maximin solution over
the arbitrary EF solution? Given the high importance attributed to social disparity
when reasoning about fair division [Herreiner and Puppe 2009], we hypothesized that
the price vectors of the maximin solution exhibited significantly lower disparity than
the price vectors of the EF solution. This was supported by many of the textual com-
ments relating to social disparity. Figure 5 shows the cumulative distribution of dispar-
ity across all instances that were included in the user study. The x axis indicates the
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Fig. 5: Cumulative distribution over the social disparity across all instances that were
included in the user study. The x axis indicates the percentage of social disparity out
of the total rent price.

disparity as percentage of the total rent. As shown by the figure, the disparity associ-
ated with the maximin solution is indeed significantly lower. In fact, in many instances
the disparity is zero under the maximin solution. (For the n = 2 case, Lemma 5.1 shows
that the minimum disparity is zero for any instance.) We believe that this large dif-
ference in disparity played a key role in subjects’ preference for the maximin solution,
trumping the relatively small improvement in utilities.

7. DISCUSSION
The reader may wonder why we have not addressed game-theoretic issues. One rea-
son is that envy freeness is inherently incompatible with incentive compatibility. This
follows from the classic result of Green and Laffont [1979] and the fact that envy free-
ness implies Pareto efficiency in our setting. More importantly, we believe that, in rent
division, strategic behavior does not play a significant role in practice. In particular, on
Spliddit each user enters values for rooms separately, without seeing the information
submitted by other users. Moreover, most users do not know how the algorithm works
(we do not attempt to explain the algorithm itself, only its fairness guarantees).

Nevertheless, one might worry that some of the values submitted on Spliddit have
been strategically manipulated — would that invalidate the results of our user study
(Section 6)? Our answer is negative. We do not assume that the values are real — the
results of Section 6 are especially appealing because the goods (namely, the rooms)
are real. In fact, we are interested in determining which algorithm leads to fairer
outcomes in practice, and, even if some users did manipulate their reported values,
that is exactly the real-world input we should be feeding into our algorithms.5

Taking a broader viewpoint, we believe that computational fair division is a prime
example of how the interaction between computer science and economics can lead
to novel applications. We find it particularly exciting that fundamental theoretical
questions in this field have direct real-world implications [Aleksandrov et al. 2015;
Kurokawa et al. 2015; Procaccia and Wang 2014]. The current paper takes the compu-
tational fair division agenda a step further, by tying together theory, experiments on
real data, a carefully designed user study, and a deployed application.

5This argument does assume that the manipulation strategy is independent of the details of the algorithm,
but we strongly believe this is true in almost all cases because users are not aware of those details.
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A. PROOF OF THEOREM 5.5
We start by restating, and proving, Lemma 5.4.

LEMMA 5.4. If V ∈ C∗(ε), then there exist EF price vectors p+ and p− such that
U(p−) ≥ OPT−1

3 − 2
3ε, but U(p+) = 0. Moreover, D∗(V ) ≤ ε, but D+(V ) ≥ 2ε.

PROOF. Let V be a 3 player rent division instance such that vi1 = xi, vi2 = yi −
xi, vi3 = 1− yi, where xi ≤ yi ∈ [0, 1] for all i ∈ N . We assume w.l.o.g. that

(1) |xi − xj | ≤ ε for all i, j ∈ [n].
(2) y2 ≥ y1 + 2ε, y3 ≤ y1 − 2ε.

First, we claim that the only optimal room allocation in this case is allocating room
i to player i; the total utility from this allocation is

v11 + v22 + v33 ≥x1 + y1 − x1 + ε+ 1− y1 + 2ε = 1 + 3ε.

Having player 1 swap rooms with either player 2 or 3 results in a utility loss of at least
2ε; having players 2 or 3 swap rooms results in a utility loss of at least 3ε. Finally,
v21 +v32 +v13 ≤ 1−2ε and v31 +v12 +v23 ≤ 1−ε. Thus, the only optimal room allocation
is allocating room i to player i; we again write OPT =

∑n
i=1 vii.

Next, we claim that the payoff division (x1, y1 − x1, 1 − y1) is EF. Indeed, player 1’s
utility from every room is 0, so she envies no one. Moreover, player 2 receives a utility of
at least 2ε from her room, a negative utility from room 3, and a utility of at most ε from
room 1; this similarly holds for player 3; thus D+(V ) ≥ max{v22 − v12, v33 − v13} ≥ ε.

Finally, let us set

p−1 = v11 +
2

3
ε− OPT − 1

3
, p−2 = v22 −

ε

3
− OPT − 1

3
, p3 = v33 −

ε

3
− OPT − 1

3

We have that u1(id,p−) = OPT−1
3 − 2

3ε, and u2(id,p−) = u3(id,p−) = OPT−1
3 + ε

3 . In
particular, D(p−) = ε. Moreover:

v12 − p−2 = y1 − x1 − y2 + x2 +
OPT − 1

3
+
ε

3
≤ OPT − 1

3
− 2

3
ε = v11 − p−1

v13 − p−3 = 1− y1 + y3 − 1 +
OPT − 1

3
+
ε

3
< −5

3
ε+

OPT − 1

3
< v11 − p−1

v21 − p−1 ≤ x1 + ε− x1 −
2

3
ε+

OPT − 1

3
≤ OPT − 1

3
+
ε

3
= v22 − p−2

v23 − p−3 ≤ 1− y1 − 2ε− (1− y1 + 2ε) +
OPT − 1

3
<

OPT − 1

3
< v22 − p−2

v31 − p−1 ≤ x1 + ε− x1 −
2

3
ε+

OPT − 1

3
< v33 − p−3

v32 − p−2 ≤ y1 − x1 − ε− (y1 − x1 + ε) +
OPT − 1

3
< v33 − p−3 .

Thus, p− is EF, which concludes the proof.

We are now ready to prove the theorem.

PROOF OF THEOREM 5.5. The proof bounds the probability of drawing an instance
in C∗(ε). We observe that the probability of V ∈ C∗(ε) with ε agreement on the first
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room is equal to having V ∈ C∗(ε), and having players agree on rooms 2 or 3. Thus,
using the notations of the proof of Lemma 5.4,

Pr[V ∈ C∗(ε)] = 3 · Pr[V ∈ C∗(ε) ∧ ∀i, j : |xi − xj | < ε].

Moreover, given a permutation σ : [3]→ [3],

Pr[V ∈ C∗(ε) ∧ ∀i, j : |xi − xj | < ε ∧ yσ(1) > yσ(2) > yσ(3)]

= Pr[V ∈ C∗(ε) ∧ ∀i, j : |xi − xj | < ε ∧ y2 > y1 > y3],

thus
Pr[V ∈ C∗(ε)] = 18 Pr [∀i, j : |xi − xj | < ε ∧ y2 > y1 > y3] , (6)

which is exactly the case discussed in Lemma 5.4.
We next claim that for ε < 0.25 and fixed x1 = a, y1 = b such that b ≥ a+ 3ε, if a > ε,

then

Pr[∀i, j : |xi − xj | < ε ∧ y2 > y1 + 2ε ∧ y1 > y3 + 2ε] = 12ε2(1− b− 2ε) (b− a− 2ε) , (7)

and if a ≤ ε then
Pr[∀i, j : |xi − xj | < ε ∧ y2 > y1 + 2ε ∧ y1 > y3 + 2ε]

= 2ε(1− b− 2ε)(2b− a− 5ε)(ε+ 2a)
(8)

We establish these equations via simple integration over all values of x2, x3, y2, y3 that
satisfy the conditions, multiplying (for each player in {2, 3}) by the joint density for
uniform order statistics, which is 2. For Equation (7), we get that the probability we
wish to estimate is

4

∫ a+ε

x3=a−ε

∫ b−2ε

y3=x3

∫
x2:|x2−a|,|x2−x3|<ε

∫ 1

y2=b+2ε

1.

The condition |x2 − a|, |x2 − x3| < ε is more easily represented if we split the integral
into two paths:

4

∫ a

x3=a−ε

∫ b−2ε

y3=x3

∫ x3+ε

x2=a−ε

∫ 1

y2=b+2ε

1 + 4

∫ a+ε

x3=a

∫ b−2ε

y3=x3

∫ a+ε

x2=x3−ε

∫ 1

y2=b+2ε

1

= 4(1− b− 2ε)

[∫ a

x3=a−ε

∫ b−2ε

y3=x3

∫ x3+ε

x2=a−ε
1 +

∫ a+ε

x3=a

∫ b−2ε

y3=x3

∫ a+ε

x2=x3−ε
1

]

= 4(1− b− 2ε)

[∫ a

x3=a−ε

∫ b−2ε

y3=x3

(x3 − a+ 2ε) +

∫ a+ε

x3=a

∫ b−2ε

y3=x3

(a− x3 + 2ε)

]

= 4(1− b− 2ε)

[∫ a+ε

x3=a−ε

∫ b−2ε

y3=x3

2ε+

∫ a

x3=a−ε

∫ b−2ε

y3=x3

(x3 − a) +

∫ a+ε

x3=a

∫ b−2ε

y3=x3

(a− x3)

]

= 4(1− b− 2ε)

[
4ε2(b− a− 2ε)− 1

6
ε2(3b− 3a− 4ε)− 1

6
ε2(3b− 3a− 8ε)

]
= 12ε2(1− b− 2ε) (b− a− 2ε) .

This establishes Equation (7). For Equation (8), we repeat the computation for the
case where a < ε, splitting the integration on x3 to the ranges x3 ∈ [0, a], x3 ∈ [a, ε], x3 ∈
[ε, a+ ε]. It holds that

4

∫ a+ε

x3=0

∫ b−2ε

y3=x3

∫
x2:|x2−a|,|x2−x3|<ε

∫ 1

y2=b+2ε

1
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= 4

[∫ a

x3=0

∫ b−2ε

y3=x3

∫ x3+ε

x2=0

∫ 1

y2=b+2ε

1 +

∫ ε

x3=a

∫ b−2ε

y3=x3

∫ a+ε

x2=0

∫ 1

y2=b+2ε

1

+

∫ a+ε

x3=ε

∫ b−2ε

y3=x3

∫ a+ε

x2=x3−ε

∫ 1

y2=b+2ε

1

]

= 4(1− b− 2ε)

[∫ a

x3=0

∫ b−2ε

y3=x3

∫ x3+ε

x2=0

1 +

∫ ε

x3=a

∫ b−2ε

y3=x3

∫ a+ε

x2=0

1 +

∫ a+ε

x3=ε

∫ b−2ε

y3=x3

∫ a+ε

x2=x3−ε
1

]

= 4(1− b− 2ε)

[∫ a

x3=0

∫ b−2ε

y3=x3

(x3 + ε) +

∫ ε

x3=a

∫ b−2ε

y3=x3

(a+ ε) +

∫ a+ε

x3=ε

∫ b−2ε

y3=x3

(a− x3 + 2ε)

]

= 4(1− b− 2ε)

[∫ a

x3=0

(b− 2ε− x3)(x3 + ε) +

∫ ε

x3=a

(b− 2ε− x3)(a+ ε)

+

∫ a+ε

x3=ε

(b− 2ε− x3)(a− x3 + 2ε)

]
= 4(1− b− 2ε)

[∫ a

x3=0

(b− 2ε− x3)x3 + ε

∫ a

x3=0

(b− 2ε− x3) + (a+ ε)

∫ ε

x3=a

(b− 2ε− x3)

+ (a+ 2ε)

∫ a+ε

x3=ε

(b− 2ε− x3)−
∫ a+ε

x3=ε

(b− 2ε− x3)x3

]
= 4(1− b− 2ε)

(
1

2
(2b− 11a)ε2 − 5

2
ε3 + (2ab− a2)ε

)
= 4(1− b− 2ε)

1

2
ε
(
2bε− 11aε− 5ε2 + 4ab− 2a2

)
= 2ε(1− b− 2ε)(2b− a− 5ε)(ε+ 2a)

This establishes Equation (8).
Next, we claim that if ε < 0.2, then

Pr[∀i, j : |xi−xj | < ε∧y2 > y1+2ε∧y1 > y3+2ε] ≥ 5063

30
ε6− 760

3
ε5+

317

3
ε4− 52

3
ε3+ε2. (9)

Indeed, note that for ε < 0.2, we have ε < 1− 4ε. Using Equations (7) and (8),

Pr[∀i, j : |xi − xj | < ε ∧ y2 > y1 + 2ε ∧ y1 > y3 + 2ε]

= Pr[∀i, j : |xi − xj | < ε ∧ y2 > y1 + 2ε ∧ y1 > y3 + 2ε ∧ x1 ≤ ε]
+ Pr[∀i, j : |xi − xj | < ε ∧ y2 > y1 + 2ε, y1 > y3 + 2ε ∧ x1 > ε]

≥
∫ ε

a=0

∫ 1−2ε

b=a+3ε

2 · 2ε(1− b− 2ε)(2b− a− 5ε)(ε+ 2a)

+

∫ 1−4ε

a=ε

∫ 1−2ε

b=a+3ε

2 · 12ε2(1− b− 2ε)(b− a− 2ε)

=
5063

30
ε6 − 760

3
ε5 +

317

3
ε4 − 52

3
ε3 + ε2,

which establishes Equation (9)
Finally, in order to obtain the lower bound, we simply combine Equation (9) with

Equation (6), that is, multiply the bound of Equation (9) by 18. It follows that for
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ε < 0.2,

Pr[V ∈ C∗(ε)] ≥ 15189

5
ε6 − 4560ε5 + 1902ε4 − 312ε3 + 18ε2.

Figure 6 provides a graphical representation of our lower bound on Pr[V ∈ C∗(ε)] as
a function of ε.

Fig. 6: The lower bound on the likelihood of V ∈ C∗(ε), where ε ∈ [0, 0.2] is plotted on
the x axis.
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