
Proceedings Article

Optimizing Password Composition Policies

JEREMIAH BLOCKI, Carnegie Mellon University

SARANGA KOMANDURI, Carnegie Mellon University

ARIEL D. PROCACCIA, Carnegie Mellon University

OR SHEFFET, Carnegie Mellon University

A password composition policy restricts the space of allowable passwords to eliminate weak passwords that

are vulnerable to statistical guessing attacks. Usability studies have demonstrated that existing password

composition policies can sometimes result in weaker password distributions; hence a more principled ap-
proach is needed. We introduce the first theoretical model for optimizing password composition policies.

We study the computational and sample complexity of this problem under different assumptions on the
structure of policies and on users’ preferences over passwords. Our main positive result is an algorithm

that – with high probability — constructs almost optimal policies (which are specified as a union of sub-

sets of allowed passwords), and requires only a small number of samples of users’ preferred passwords. We
complement our theoretical results with simulations using a real-world dataset of 32 million passwords.

Categories and Subject Descriptors: K.4.4 [Electronic Commerce]: Security

General Terms: Algorithms, Economics, Security, Theory

Additional Key Words and Phrases: Password composition policy, Sampling, Computational complexity

1. INTRODUCTION

Imagine a web surfer, an online shopper, or a reviewer in a prominent CS and Economics
conference who logs on for the first time to a server; so that she can sign up for some service,
place a shopping order, or view a list of assigned papers. Such a user registers on the server
by choosing a username and picking a password. Naturally, our user’s first attempt at
picking a password is her favorite combination ‘123456’, which the server declines. She then
has to pick a password that follows certain guidelines: of suitable length, involving lower-
and upper-case letters, with numbers or special characters, etc. Such password composition
policies defend against the “first line” of attack – guessing attacks by uninformed attackers
(attackers with no previous knowledge of the user whose account they are trying to break
into).

Password composition policies are a necessity because — without them — user-selected
passwords are predictable. Indeed, many unrestricted users would select simple passwords
like ‘123456’, ‘password’ and ‘letmein’ [Doel 2012]. Furthermore, this issue is of great

This research was supported in part by the National Science Foundation Science and Technology TRUST,
by the National Science Foundation under grants DGE-0903659, CNS-1116776, CCF-1101215 and CCF-
1116892, by CyLab at Carnegie Mellon under grants DAAD19-02-1-0389 and W911NF-09-1-0273 from the
Army Research Office, by the AFOSR MURI on Science of Cybersecurity, by a gift from Microsoft Research
and by a NSF Graduate Research Fellowship.
Authors’ addresses: J. Blocki, Computer Science Department, Carnegie Mellon University, email:
jblocki@cs.cmu.edu; S. Komanduri, Human Computer Interaction Institute, Carnegie Mellon University,
email: sarangak@cs.cmu.edu; A. D. Procaccia, Computer Science Department, Carnegie Mellon University,
email: arielpro@cs.cmu.edu; O. Sheffet, Computer Science Department, Carnegie Mellon University, email:
osheffet@cs.cmu.edu.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credits
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any com-
ponent of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
EC’13, June 16–20, 2013, Philadelphia, USA. Copyright c© 2013 ACM 978-1-4503-1962-1/13/06...$15.00

105



Proceedings Article

importance to today’s economy. Passwords are commonly used in electronic commerce to
protect financial assets. In fact, the passwords themselves have financial value. Symantec
reported that compromised passwords are sold for between $4 and $30 on the black market
[Fossi et al. 2008], and a 2004 Gartner case study [Witty et al. 2004] estimated that it cost
a large firm over $17 per password-reset call. Nevertheless, existing password composition
policies are typically not principled, and do not necessarily result in less common passwords.
For example, studies show that users respond to restrictions in predictable ways [Komanduri
et al. 2011], or pick weaker passwords due to user-fatigue [Clair et al. 2006; Kruger et al.
2008].

In this paper, we initiate the algorithmic study of password composition policies. Such
policies restrict the space of passwords to a subset of allowed passwords, and force each
user to pick a password in this subset. Thus, n users induce a distribution over passwords
where for a password w, Pr[w] = 1

n |{i : i picks w}|. By declaring different subsets of
allowed passwords, different password composition policies induce different distributions.
Our work formalizes and addresses the algorithmic problem a server administrator faces
when designing a password composition policy; we ask:

In what settings can the information about the users’ preferences over passwords
allow us to design a password composition policy that is guaranteed to induce a
password distribution as close to uniform as possible?

We wish to stress at this point that we do not take a cryptographic approach to the
problem: we do not design a protocol aimed at amplifying a password’s strength, nor do
we rely on standard cryptographic assumptions or techniques in designing our password
composition policies. Single-factor authentication does not defend against an attacker who
learns about the most probable password from an external source. Furthermore, because
password systems often allow users multiple attempts in entering their password, an attacker
can make a small number of guesses with impunity. Therefore, we instead focus on the
design and analysis of algorithms for optimizing the password composition policy’s induced
distribution over passwords, and in our theoretical results compare the performance of our
algorithm to the optimal policy among exponentially many potential policies in the worst
case.

1.1. Our Model

We study the algorithmic problem of optimizing password composition policies along mul-
tiple dimensions: the goal, the user model, and the policy structure.

Goal. We focus on designing a policy that maximizes the minimum-entropy of the resulting
password distribution. Specifically, we assume the server deals with n users, each picking a
password from some space of passwords P that respects the server’s password composition
policy. These n passwords form a distribution over the domain of all allowed passwords and
our goal is to minimize the probability of the most likely password. This is a natural goal
(see Section 7), as opposed to maximizing the Shannon-entropy of the distribution, which
for example is still high even if half the people choose the same password and the other half
choose a password uniformly at random from P. From a security standpoint, the minimum
entropy represents the fraction of accounts that could be compromised in one guess. For
example, an adversary would be able to crack 0.9% of RockYou passwords [Imperva 2010]
with only one guess. Alternatively, should the attacker attempt to break into only one
account, the minimum entropy represents the likelihood that the account is compromised
on the first guess. We also consider a slightly stronger goal of minimizing the fraction of
accounts that could be compromised using k guesses, that is, the overall probability of the
k most likely passwords [Boztas 1999].

106



Proceedings Article

User model. We consider two models for how users select passwords when presented with
a password composition policy.

In the ranking model, each user has an implicit ranking over passwords, from the most
preferred to the least preferred. Given a password policy, each user selects the highest-
ranking password among those allowed by the policy. There is a distribution over the space
of rankings that determines the fraction of users with each possible ranking. Note that for
any password composition policy, such a distribution over rankings induces a distribution
over the most preferred allowed passwords.

In the normalization model, there is a distribution D over the space of all passwords.
This distribution tells us the likelihood that an unrestricted user would select a given pass-
word. Given a password composition policy, D induces a new distribution over the allowed
passwords (which can be obtained by normalizing the probabilities under D of the allowed
passwords). When we ban a password the fraction of users that prefer each allowed pass-
word grows; the natural interpretation is that users who preferred an allowed password still
use that password, but users who preferred a banned password are redistributed among the
allowed passwords according to the induced distribution.

As we show, the normalization model is strictly more restrictive than the ranking model:
any distribution in the normalization model can be simulated in the ranking model, but
there exist hardness results for the ranking model that do not hold for the normalization
model.

Policy structure. We consider the best policy that is restricted to manipulation of a given
set of rules — each rule is simply a predefined subset of potential passwords. These rules
are given to us as part of the problem (see Section 7 for a discussion of this point). If
we interpret a rule as a subset of banned passwords (e.g., passwords shorter than seven
characters), its complement (e.g., passwords of at least seven characters) can be interpreted
as a subset of allowed passwords. As such, when we take the union of rules we get either a
set of banned passwords (negative rules) or allowed passwords (positive rules); this is our
password composition policy. While the distinction between the two cases may at first seem
a mere technicality, it is in fact quite significant due to the following observation. If we ban
the union of rules then in order to ban a password that was picked by too many users, we
may ban any rule that contains this password. In contrast, if we allow a union of rules then
in order to ban this password we must not allow any rule that contains it. In other words,
when our goal is to discard a password in the negative rules setting, we have multiple ways
to do so. When our goal is to discard a password in the positive rules setting, we have
only one way to do so — excluding all rules that allow this password. As we shall see, this
seemingly small difference leads to a clear separation between the two scenarios in terms of
the complexity of designing optimal policies.

We pay special attention to the case where each password has its own singleton rule.
In this setting, a policy can be interpreted as a “blacklist” of banned passwords that do
not necessarily share common characteristics. Note that when each password has its own
singleton rule, it does not matter whether these rules are positive or negative.

1.2. Our Results

As we noted above, a password composition policy induces a distribution over most preferred
passwords (in both user models). We study algorithms that sample these distributions
— algorithms that repeatedly query random users and ask them to choose a password
constrained by some policy, and then output the a good policy for the empirical sample
of users. Our goal is therefore twofold: (i) to show that having sufficiently many samples
(i.e., sufficiently many users queried) guarantees that w.h.p the best policy for the empirical
sample is good for all users; and (ii) exhibit algorithms that find an optimal (or close-to-
optimal) policy for a given sample. Clearly, we want our sample size to be “small”. In

107



Proceedings Article

Table I: Summary of Complexity Results.

Ranking Model Normalization Model

Constant k Large k Constant k Large k

Singleton rules P NP-Hard (Thm
3.4)
APX-Hard w/
UGC (Thm 3.5)

P P (Thm 4.1)

Positive rules P (Thm 3.2 ) NP-Hard P NP-Hard
(Thm 4.4)

Negative rules n1/3-approx is NP-
hard (Thm 3.6)

NP-Hard NP-Hard (Thm
4.2)

NP-Hard

particular, since the size of the space of all passwords P — which we denote by N — is
typically very large (e.g., P can include all passwords that are no longer than 32 ASCII
characters), we wish to get a bound on the sample size that is independent of N .

For the ease of exposition, we discuss goal (ii) before goal (i). I.e., we first (Sections 3
and 4) study the problem in a simpler setting where the preferences of all users are given
to us as input; and only then (Section 5) we introduce an algorithm that samples users’
preferences. Also for the ease of exposition, we first discuss algorithms where P is a part of
the input, so they are allowed to run in time polynomial in N . This is motivated by the fact
that computational complexity of problems in this setting informs their study in the sam-
pling setting — it is hopeless to design efficient sampling algorithms for problems that are
computationally hard. (Efficient sampling algorithms are applicable only to computationally
tractable problems.)

Table I summarizes our complexity results. The parameter k refers to our optimization
target: minimizing the likelihood of the k most likely passwords. Some results are direct
corollaries of others — using the fact that singleton rules are a special case of positive
rules and the fact that the normalization model is a special case of the ranking model (see
Section 2). Looking at the table one immediately notices a clear separation between negative
rules and positive rules: optimization using the latter is much easier.

We therefore focus on positive rules in our attempt to design an efficient sampling algo-
rithm. Our main result is the best one could hope for in this setting. We design an algorithm
that works in the more general ranking model, and finds a policy whose entropy is ε-close
to optimal with probability 1 − δ, for any given ε, δ > 0. The required number of samples
is polynomial in 1/ε, log(1/δ), and the number of positive rules m. We can assume that
m is small, because each rule corresponds to a subset of passwords that can be concisely
described to users.

These results can be applied in a practical setting, and we show this through simulated
sampling experiments using natural rules and a large dataset of real passwords. The exper-
imental results provide evidence for the difficulty of the negative rules setting: we search
all combinations of rules to find the optimal policy and then attempt to discover this pol-
icy by making decisions both randomly and with a heuristic. In the negative rules setting,
neither approach succeeded at finding the optimal policy after hundreds of iterations at
various sample sizes, and average-case performance did not improve with sample size. In
the positive rules setting, the average-case performance of our efficient algorithm improved
with sample size and, with a moderate sample size, found policies that were either optimal
or very close to optimal.

1.3. Related Work

It has been repeatedly demonstrated that users tend to select easily guessable passwords
[Imperva 2010; Doel 2012; Bonneau 2012] and NIST recommends that organizations “should

108



Proceedings Article

also ensure that other trivial passwords cannot be set,” to thwart potential attackers [Scar-
fone and Souppaya 2009]. Unfortunately, this task is more difficult than it might appear
at first. Policies were initially developed without empirical data to support them, since
such data was not available to policy designers [Burr et al. 2006]. When hackers leaked the
RockYou dataset to the Internet, both researchers (and attackers) suddenly had access to
password data, leading to many insights into true passwords [Weir et al. 2010]. However,
recent research analyzing leaked datasets from non-English speakers, notably Hebrew and
Chinese-language websites, shows that trivial password choices can vary between contexts,
making a simple blacklist approach ineffective [Bonneau and Xu 2012]. This means that,
depending on the context, a policy based on leaked password data might provide no security
guarantee, and it has ethical issues as well.

To combat this issue, researchers have turned to a sampling approach. Bonneau [2012]
added a system for sampling to the Yahoo! password infrastructure. This system allows one
to gain empirical data about the frequency distribution of passwords without revealing the
passwords themselves. Such approaches provide a way of gathering empirical data about
passwords while maintaining the anonymity of users. Our algorithms could be used in
conjunction with such an infrastructure to optimize policies.

Komanduri et al. [2011] studied the effectiveness of several basic password composition
policies by using Amazon’s Mechanical Turk to conduct a large scale user study. They found
that people often respond to restrictions in predictable ways (e.g., if the password needs
to contain a capital letter users might tend to capitalize the first letter of a password)
and provide very general recommendations for password composition policies. However, no
theoretical model has been proposed for studying the password composition problem.

Schechter et al. [2010] suggest using a popularity oracle to prevent individual passwords
that have been used too frequently from being selected by new users. They also proposed
using the count-min sketch data structure [Cormode and Muthukrishnan 2005] to build such
a popularity oracle. Malone and Maher [2012] suggest a similar system using a Metropolis-
Hastings scheme to force an approximately uniform distribution on passwords. Usability
results on the effectiveness of dictionary checks [Komanduri et al. 2011] suggest that such
policies would be very frustrating since the policy is hidden from users behind an oracle. In
contrast, we seek to construct optimal policies from combinations of rules that are visible
to the user and can be described in natural language.

This consideration of users is important to electronic commerce, even where security is
concerned. Florencio and Herley [2010] studied the economic factors that drive institutions
to adopt strict password composition policies and find that they often value the user experi-
ence over security. An e-mail provider like Yahoo! might adopt simple composition policies
because a frustrated user could easily switch to Gmail, while universities are free to adopt
strict policies because users cannot switch easily.

2. A MODEL OF PASSWORD COMPOSITION POLICIES

We use P to denote the space of all possible passwords. N = |P| is used to denote the total
number of passwords. We denote the number of users by n.

A password composition policy may be specified in terms of rules. A rule is a subset of
passwords R ⊆ P (e.g., the set of all passwords with more than seven characters). We use
R1, ..., Rm to denote a list of rules that may be active or inactive. We consider two schemes.

— Positive Rules: A password w is allowed if and only if it is allowed by some active
positive rule. Formally, a password composition policy AS =

⋃
i∈S Ri is specified by a set

S ⊆ [m] = {1, ...,m} of active rules. In this setting rules should consist of sets of passwords
which we expect to be strong (e.g., Ri might be the set of all passwords longer than 10
characters, or the set of all passwords that use both upper and lowercase letters, or the
set of all passwords that do not include a dictionary word).

109



Proceedings Article

— Negative Rules: A password w is allowed if and only if it is not contained in any active
negative rule. Formally, a solution AS =

{
w ∈ P w /∈

⋃
i∈S Ri

}
is given by a subset

S ⊆ [m] of active rules. A negative rule should consist of passwords that we expect to
be weak (e.g., Ri might be the set of all passwords without an uppercase letter, or the
set of all passwords shorter than 6 characters, or the set of all passwords that include a
dictionary word).

We also consider the special case of singleton rules, where our rules are {w1}, . . . , {wN}.
Equivalently, we are allowed to ban or allow any individual password.

We use Pr[w A] to denote the probability of a password w given composition pol-
icy A. For w /∈ A we have Pr[w A] = 0. Given a set W ⊆ A we will also use
Pr[W A] =

∑
w∈W Pr[w A]. We use p (k,A) = maxW⊆A:|W |=k Pr[W A] to denote the

probability of the k most popular passwords. Intuitively, p (k,A) represents the probability
that an adversary can successfully guess a password using k attempts. To avoid cumber-
some notation we sometimes use p1 = p (1,A) to denote the probability of the most popular
password. Similarly, we use p2 (resp., pk) to denote the probability of the second (resp.,
k’th) most popular password.

We consider two user models that determine how users choose passwords under a given
password composition policy.

— The ranking model: A ranking is simply a permutation of P, which represents a user’s
password preferences. It can be represented using an ordered list `i = w1,i, ..., wN,i; user i
prefers password wj,i to wj+1,i for all j. The ranking `i naturally tells us which password
i will pick under any composition policy A. Specifically, i will use password wA,i = wj,i
where j = argmin{t : wt,i ∈ A}. Given a distribution D over rankings, we have

Pr [w A] = Pr
`i∼D

[wA,i = w] .

— The normalization model: Let D be an initial distribution over P, and let Pr [w] =
Prx∼D [w = x]. If we select the composition policy A then the probabilities of all w ∈ A
are simply re-normalized so that

∀w ∈ P,A ⊆ P,Pr [w A] =
Pr [w]

Pr [A]
.

Clearly it holds for both models that the probability of an allowed password monotonically
increases as one bans more passwords. Formally, for all w ∈ A and B ⊆ P such that w /∈ B
we have

Pr [w A] ≤ Pr [w A\B] . (1)

Another important observation is that for our purposes the ranking model is more general
than the normalization model. Indeed, we argue that a distribution D over passwords in
the normalization model induces an equivalent distribution over rankings. To generate the
most highly ranked password, draw a password w1 from D. Next, let A1 = P \ {w1}, and
draw the next most preferred password w2, where w2 = w with probability Pr[w |A1]. In
the following round we ban w2 to obtain a policy A2, and so on, until all passwords have
been banned.

Given k ∈ N, our goal is to find S ⊆ [m] such that p (k,AS) ≤ p (k,AS′) for all S′ ⊆ [m].
When k = 1 this goal is equivalent to maximizing the minimum entropy. If p (k,AS) ≤
c · p (k,AS′) + ε for all S′ ⊆ [m] then we say that S is a (c, ε)-approximation. To simplify
notation we sometimes use c-approximation instead of (c, 0)-approximation.

3. RANKING MODEL: COMPLEXITY RESULTS

In this section we consider the complexity of finding the optimal password composition
policy in the more general ranking model when the organization is given complete informa-

110



Proceedings Article

tion about users’ preferences. Specifically, the organization is given the rankings `1, ..., `n of
every user.

Our first result is for the positive rules setting. Given positive rules R1, ..., Rm we show
that p (k,AS) can be computed efficiently for constant values of k (see Theorem 3.2). In
fact, for the special case k = 1 we present a very simple algorithm that suffices. Both
algorithms can be easily extended to the less general normalization model. Our algorithms
are based on three simple ideas: (1) Reduced Preference Lists — each preference list `i can

be efficiently reduced to a short (length ≤ m) preference list ˆ̀
i. (2) Guess and Check —

start by guessing the ‘structure’ of the optimal solution and find the resulting solution. (3)
Iterative Elimination — find the most popular password w and eliminate all positive rules
that contain w. Our sampling algorithms are based on the same core ideas.

Unfortunately, the picture is different in the negative rules even when k is a constant.
Given negative rules R1, ..., Rm we show that it is hard to even n1/3-approximate p (1,AS).
Also, for non-constant values of k we show that it is hard to compute p (k,AS) in the
singleton rules setting, which immediately implies hardness in both the positive rules setting
and in the negative rules setting. Given a stronger complexity assumption known as the
Unique Games Conjecture [Khot 2002] it is also hard to c0-approximate p (k,AS) in the
singleton rules setting for some constant c0. However, our hardness results do not rule out
the possibility of a c-approximation for a larger constant c.

3.1. Positive Rules: Efficient Algorithm for Constant k

We first show that p (k,AS) can be computed efficiently for constant values of k in the
positive rules setting. In this section the organization is given positive rules R1, ..., Rm as
well as preference lists `1, ..., `n. We assume that the organization can efficiently query the
preference lists (e.g., given S ⊆ [m] the organization can efficiently find `i (AS) — user i’s
preferred password given policy AS).

We elaborate on the key algorithmic ideas listed above. First, we can efficiently reduce

each preference list `i to a list ˆ̀
i of at most m passwords (Claim 3.1). While the reduced list

ˆ̀
i is much shorter than `i it is still sufficient to determine user i’s preferred password given

policy AS for any S ⊆ [m]. We use P̂ to denote the reduced space of potential passwords.

Algorithm 1 Reduce

Input:
Preference List: `
Positive Rules: R1, ..., Rm
Initialize: i← 0, S0 ← [m], ˆ̀← empty ranking.
while Si 6= ∅ do

Let w be ` (ASi
).

ˆ̀← 〈ˆ̀, w〉 . ‘Append’ the current most preferred password to ˆ̀

Si+1 ← Si \ {j w ∈ Rj} . Deactivate all rules that contain w
i← i+ 1

return ˆ̀

Claim 3.1. Algorithm 1 makes at most m queries to ` and m2 membership queries and

outputs a reduced preference list ˆ̀ over at most m passwords such that for every S ⊆ [m] it

holds that ˆ̀(AS) = ` (AS).

Proof. Clearly, the algorithm’s main loop iterates at most m times because for each i
we eliminate at least one rule (e.g., |Si+1| < |Si|), so the bound on queries and the length

111



Proceedings Article

of ˆ̀ are immediate. (Because we assume that we can query ` efficiently Algorithm 1 is also

efficient.) By construction we have ˆ̀(Si) = `(Si) for each Si. Fix any S ⊆ [m]. Let Si
be such that S ⊆ Si yet S 6⊆ Si+1 and let wi be the most preferred word in ` out of all
words in

⋃
j∈Si

Rj . If it is the case that wi ∈
⋃
j∈S Rj , then wi is the most preferred word

in S too and we’re done. Otherwise, wi ∈
⋃
j∈Si\S Rj which means that removing the set

{j ∈ Si : wi ∈ Rj} creates a set Si+1 s.t. S ⊆ Si+1, contradiction.

Second, the “guess and check” idea means that our algorithm starts by guessing what the
optimal solution looks like (e.g., what the k most popular passwords will be in the optimal
solution and what the probability of the k’th most popular password is). There are at most

(mn)
O(k)

potential solutions to brute-force try. As we show, for each solution, it is easy to
figure out which sets must be eliminated.

Algorithm 2 GuessAndCheck

Input:
Preference Lists: `1, ..., `n
Positive Rules: R1, ..., Rm ⊆ P
Integer k
Initialize: Candidates← ∅ . Candidate Solutions
for i = 1→ n do

ˆ̀
i ← Reduce (`i, R1, ..., Rm)

P̂ ←
⋃n
i=1

ˆ̀
i. . Reduced Password Space

for all (G, p) with G ⊆ P̂ s.t. |G| = k and p ∈ {1/n, 2/n, ..., 1} do
SG,p ← [m]

while SG,p 6= ∅ and ∃w ∈
(
P̂ \G

)
∩ ASG,p

s.t Pr
[
w ASG,p

]
> p do

SG,p ← SG,p \ {j | w ∈ Rj} . Ban w because it is inconsistent with guess

if Pr
[
w ASG,p

]
≤ p for all w ∈

(
ASG,p

\G
)
then

Candidates← Candidates ∪ {SG,p}
return arg min(G,p)∈Candidates p

(
k,ASG,p

)
Theorem 3.2. Algorithm 2 runs in time polynomial in nk, mk and outputs a set of

positive rules S ⊆ [m] of positive rules such that

p (k,AS) ≤ p (k,AS′)
for every other set S′ ⊆ [m].

Proof. It is evident that the running time of the algorithm is poly(nk,mk) since we
only have O((nm)k) potential solutions to try.

Let AS∗ denote an optimal solution and let G∗ denote the k most popular passwords in
this solution. Suppose we start with the correct guess (G = G∗ and p is the probability of the
k’th most popular password), then we claim that our algorithm must produce the optimal
solution. In particular, we maintain the invariant that AS∗ ⊆ ASG,p

until we converge to the
optimal solution. Clearly, this is true initially — before we have eliminated any passwords.

Suppose that the invariant holds and that our algorithm bans a password w ∈ P \G by
deactivating all rules in SG,p that contain w. Then by the definition of our algorithm we
must have Pr

[
w ASG,p

]
> p. If w ∈ AS∗ then by Equation (1) we have

Pr [w AS∗ ] ≥ Pr
[
w ASG,p

]
> p ,

112



Proceedings Article

which contradicts the choice of G. Therefore w /∈ AS∗ , so all rules that contain it are
deactivated in AS∗ and the invariant still holds. By definition Algorithm 2 terminates when
every password w ∈ ASG,p

\G has probability at most p. Because our invariant still holds
we can apply Equation (1) again to get

Pr
[
G ASG,p

]
≤ Pr [G AS∗ ] = p (k,AS∗) .

Hence, ASG,p
is an optimal solution.

For the special case k = 1 the simple algorithm IterativeElimination (Algorithm 3) suf-
fices. The basic idea is very simple: iteratively eliminate the most popular password w by
deactivating all positive rules that contain w. We repeat this process until no passwords
remain. We claim that one of the solutions along the way was the optimal solution.

Algorithm 3 IterativeElimination

Input:
Preference Lists: `1, ..., `n
Positive Rules: R1, ..., Rm ⊆ P
Initialize: S0 ← [m], i← 0
while Si 6= ∅ do

w (Si)← arg max {Pr [w | ASi
] w ∈ ASi

} . w (Si) is most popular allowed pwd
Si+1 ← Si \ {j w (Si) ∈ Rj} . Deactivate all rules that contain w (Si)
i← i+ 1

return Si∗ where i∗ ← arg mini p (1,ASi
)

Theorem 3.3. Algorithm 3 outputs a set of positive rules S ⊆ [m] such that

∀S′ ⊆ [m] , p (1,AS) ≤ p (1,AS′) .

Proof. Let T denote the optimal policy. Clearly if T = [m] then our algorithm returns
S∗ = T because that is the first set we try. Otherwise, T ( [m]. Let S be the last set our
algorithm considers that has the property that T ⊆ S. Again, if T = S, our algorithm returns
S. Let w(T ) be the most popular word in AT , and because of optimality Pr[w(T ) | AT ] ≤
Pr[w(S) | AS ].

Now, because we modify S to not contain T in the next iteration, then the most popular
word in S, w(S) has to belong to some rule Rj where j ∈ T . Therefore w(S) ∈

⋃
j∈T Rj , and

by the definition, the most popular word in AT satisfies Pr[w(T ) | AT ] ≥ Pr[w(S) | AT ].
But observe, because w(S) ∈

⋃
j∈T Rj , we must have that w(S) is at least as popular in

T . Indeed, if ` is a preference list where we disallowed P \
⋃
j∈S Rj and the most preferred

word is w(S), then as long as we disallow more words but keep allowing w(S) the word
w(S) remains at the top of the list. Therefore, Pr[w(S) | AT ] ≥ Pr[w(S) | AS ]. Combining
together all inequalities we get Pr[w(T ) | AT ] = Pr[w(S) | AS ], which means our algorithm
returns S∗ = S.

3.2. Singleton Rules: Hardness for Large k

Now we turn our attention to the problem of optimizing p (k,AS) for large values of k.
Theorem 3.4 says that unless P = NP no polynomial time algorithm can compute p (k,AS)
even with singleton rules. If we are willing to make the Unique Games Conjecture (UGC)
[Khot 2002] then it is hard to even c0-approximate p (k,AS) for some constant c0. These
results immediately imply hardness in both the positive and negative rules setting because
these settings are a generalization of the singleton rules setting.

113



Proceedings Article

Theorem 3.4. Unless P = NP there is no poly(k, n,N)-algorithm that gets as input
an arbitrary set of n preference-lists `1, ..., `n over P and an integer k, and outputs the
optimal p(k,A) in the singleton rules setting.

Proof. We prove the theorem using a reduction from the Vertex-Cover problem. Given
a graph G over g vertices and e edges and an integer t, we first define

P = {wu : u ∈ V (G)} ∪ {wu,v : (u, v) ∈ E(G)}

and observe that |P| = g+ e. We also construct the following n = 2e preference-lists, where
for every edge (u, v) ∈ E(G) we have the two lists:

`u,v = wu, wu,v, . . .
`v,u = wv, wu,v, . . .

where the choice of passwords below position 2 is arbitrary, but both rankings must be
identical from position 2 onwards. Finally, we set k = g + e− t− 1.

Given a policy A ⊆ P, we denote all banned words as B = P \ A. We denote by LB as
the set of words that at least one user ranks first after banning all words in B. Observe,
L∅ = {wu : u ∈ V (G)}. Using this notation, we show this reduction indeed proves NP -
hardness.

First, suppose G has a vertex cover C of size ≤ t. Then by banning all passwords B =
{wv : v ∈ C} we now have LB = P \ B, because for every (u, v) ∈ E(G) either wu
or wv are banned, so the word wu,v appears at the top of at least one of the two lists
{`u,v, `v,u}. Therefore, the n preference-lists induce a distribution whose support contains
g + e− |B| ≥ g + e− t words, thus p(g + e− t− 1,A) < 1.

Conversely, suppose all vertex covers of G are of size at least t + 1. Let A be any set of
banned words. Clearly, if |B| ≥ t+1 then the distribution induced by the n preferences-lists
has support of size at most g+e− t−1, which means that p(g+e− t−1,B) = 1. Otherwise,
|B| ≤ t, and we denote the set of vertices C = {v : wv ∈ B}. Observe, since any vertex
cover of G must contain ≥ t+ 1 vertices, then there has to be at least t+ 1− |C| edges that
C does not cover (since we can always complete C to a vertex cover by adding one vertex
from each uncovered edge). Therefore, there have to be at least t + 1 − |C| words that do
not appear at the top of any preference list. We conclude that the distribution induced by
the n preference-lists has a support of size at most

|LB| = g − |C|+ e− (t+ 1− |C|) ≤ g + e− t− 1

thus p(g + e− t− 1,A) = 1.

From the same reduction described in Theorem 3.4 we get UGC-hardness of approxima-
tion. While there are sub-exponential time algorithms to solve the Unique Games problem
[Arora et al. 2010], there are no known polynomial time algorithms. Many famous approx-
imation hardness results are based on the Unique Games Conjecture (e.g., 2 − ε hardness
for vertex cover [Khot and Regev 2008]). Our reduction relies on a result in [Austrin et al.
2011], which says that vertex cover is hard to approximate up to a (say) 1.5-factor even on
bounded degree graphs. Because we start with a bounded degree graph we can argue that
each password in our reduction appears at the top of at most d preference-lists for some
constant d. See the full version of this paper [Blocki et al. 2013] for a formal proof.

Theorem 3.5. There exists a constant c > 1 such that it is UGC-hard for a
poly(n,N, k)-time algorithm to c-approximate the optimal p(k,A) in the singleton rules
setting and the rankings model.

114



Proceedings Article

3.3. Negative Rules: Hardness of Approximation for k = 1

We next turn to negative rules, where we show that the problem is extremely difficult even
for k = 1. Though the proof appears in the full version of this paper [Blocki et al. 2013], it
is quite interesting and we encourage the reader to take a look.

Theorem 3.6. Let ε > 0. Unless P = NP there is no polynomial time algorithm (in
N,n,m) that approximates minS⊆[m] p(1,AS) to a factor of n1/3−ε in the negative rules
setting and the rankings model.

4. NORMALIZATION MODEL: COMPLEXITY RESULTS

In this section we focus on complexity results for the normalization model. Here the structure
of the input to our problem is a bit different: For each password w ∈ P we are given the
probability Pr[w] that w is selected by a random user when A = P. Note that now we
can give the distribution explicitly because it requires N numbers (whereas a distribution
over rankings requires N ! numbers). This distribution induces a distribution over P for any
password composition policy A by normalizing probabilities, as explained in Section 2.

Because the normalization model is a special case of the ranking model our algorithms for
the ranking model can also be applied in the normalization model. The question is whether
or not the hardness results carry over.

We first consider the singleton rules setting with large k, and show that that we can
compute arg minA⊆P p (k,A) in polynomial time in N (Theorem 4.1). This result separates
the normalization model from the ranking model (e.g., compare Theorems 4.1 and 3.4).
However, it does not extend to the positive rules setting. In fact, we show that optimizing
p (k,AS) is NP-Hard when k is a parameter (Theorem 4.4).

With negative rules R1, ..., Rm we show that it is hard to c0-approximate
arg maxS⊆[m] p (1,AS) (Theorem 4.2). However, we cannot rule out the possibility of an
efficient c-approximation algorithm for some constant c in the normalization model (recall
that Theorem 3.6 ruled out the possibility of a c-approximation algorithm in the ranking
model for any c).

4.1. Singleton Rules: Efficient Algorithm for large k

We present SortAndOptimize — an efficient algorithm to optimize p (k,A) in the singleton
rules setting for any value of k. The key intuition behind our algorithm is that if w1 ∈ P
is the most likely password then w1 will remain the most likely allowed password unless we
ban it — a property that does not hold in the rankings model. A formal proof of Theorem
4.1 can be found in the full version of this paper [Blocki et al. 2013].

Theorem 4.1. For every k, Algorithm 4 computes arg minA p (k,A) in the singleton
rules setting of the normalized probabilities model, in time O(N log(N)).

Algorithm 4 SortAndOptimize

Input:
Password space P and a probability distribution over P.
Integer k.
Sort the words in P from highest to lowest probability, w1, w2, . . . , wN .
return the set Ai = {wj : j ≥ i}, where i minimizes the ratio

p(k,Ai) =

∑
i≤j≤i+k Pr[wj ]∑
j≥i Pr[wj ]

115



Proceedings Article

4.2. Negative Rules: Hardness for k = 1

We next prove an inapproximability result that is somewhat weaker than the one that we
obtained for the more general ranking model.

Theorem 4.2. There exists some constant c0 > 1 such that unless NP = BPP no poly-
nomial time algorithm (in n,N,m) can c0-approximate minS⊆[m] p (1,AS) in the negative
rules setting and the normalization model.

We will require the following construction; the proof is given in the full version of this
paper [Blocki et al. 2013].

Lemma 4.3. Fix m and s such that m ≥ s. There exists a domain D of size Θ(s2 log(m))
and a family of m sets, F1, F2, . . . , Fm ⊆ D, such that each set in the family contains
|D|
2s elements, and for every C ⊆ [m] of size |C| ≤ s, we have that the size of the union∣∣⋃
i∈C Fi

∣∣ ≥ |D|2s
|C|
4 . This domain can be constructed in randomized poly(s,m) time.

That is, each set in this family contains exactly the same fraction of the domain, and
furthermore — any union of |C| ≤ s sets has the property that its cardinality is proportional
to Ω(|C|)|Fi|.

Proof of Theorem 4.2. We reduce from Set-Cover — one of the classicNP -Complete
problems [Karp 1972]. We are given sets S1, ..., Sm ⊆ U , universe U = {1, ..., g}, and an
integer t ≤ m, and we are asked whether there is a set C ⊆ [m] of size ≤ t such that
U =

⋃
i∈C Si.

It is a known fact that there exist Set-Cover instances, with (g,m, t) all polynomially
dependent of each other, that are hard to approximate to a factor of c lnn [Alon et al.
2006]. That is, on this particular family of instances, it is NP -hard to distinguish whether
there exists a cover of size t or all covers have size (1− ε)c · t lnn.

We now describe the reduction. Given a (g,m, t)-Set Cover instance, we set s = c · t ln g =
Θ(t ln t) and construct a domain D and m sets F1, F2, . . . , Fm ⊆ D as in Lemma 4.3. We then
create the following password-banning instance. First P is the union of D with additional
disjoint g words denoted w1, ..., wg. Now, for each set Si in the Set-Cover we add a rule Ri
where Ri = {wj}j∈Si

∪ Fi. Finally, we set the words’ probabilities as follows. Fixing some

arbitrarily small δ > 0, we set for every i the probability Pr[wi] = 1−δ
g , and for every x ∈ D

we set the probability Pr[x] = δ
|D| .

Without loss of generality we can assume that |D| ≥ 100g (because, for example, we can
take 100g copies of the original D). Therefore, any policy that bans all of {w1, w2, . . . wg}
yet leaves a constant (say > 1/10) fraction of D has p1 ≤ 10/|D|, whereas any policy that
keeps even one of the words in {w1, w2, . . . , wg} has p1 ≥ 1/(2g). Therefore, if the Set-
Cover instance has a cover of size ≤ s = Θ(t ln g), then a c0-approximation of the optimal
banning-policy must find a cover for {w1, w2, . . . , wg}. We will assume from now on that
our Set-Cover instance is such that it has a cover of size ≤ s. (Indeed, if s > t log(t) then
the instance is no longer NP -hard, since the greedy algorithm must return a cover of size
> t log(t) which causes us to deduce that the optimal cover must have size > t.)

So now, suppose our Set-Cover instance has a cover of size t. Then the respective union
of rules bans every password in {w1, w2, . . . , wg} and no more than t

2s |D| words of D
(we get an upper bound by multiplying the size of each set by the number of sets). This

leaves a collection of
(
1− t

2s

)
|D| equally likely words, so p1 =

(
1− t

2s

)−1 |D|−1 = (1 −
O(1/ log(g)))−1|D|−1 = (1 + o(1))|D|−1. In contrast, if all covers of our Set-Cover instance
have size s′ ≥ c · t ln(g) (where, because we assume some cover has size ≤ s, we have
s′ ≤ s,) then any collection of rules that bans all words in {w1, w2, . . . , wg} must also

ban at least s′

8s |D| words out of D. This leaves at most (1 − Ω(1))|D| words in D and

116



Proceedings Article

so p1 ≥ (1 − Ω(1))−1|D|−1. Denoting the latter constant as c−10 , we have that any c0 − ε
approximation of the optimal banning-policy indicates the existence of a cover of cardinality
< c · t ln(g).

4.3. Positive Rules: Hardness of Approximation for Large k

While we can show that it is possible to optimize p (k,A) in the singleton rules setting our
result does not extend to the more general positive rules setting. We are able to show that
it is NP-Hard to compute arg minS⊆[m] p (k,AS). However, our reduction does not imply
approximation hardness so we cannot rule out the existence of a PTAS.

Theorem 4.4. Unless P = NP there is no polynomial time algorithm (in N,m, n)
which outputs arg minS⊆[m] p (k,AS) in the positive rules setting and the normalization
model.

The theorem’s proof is relegated to the full version of this paper [Blocki et al. 2013].

5. EFFICIENT SAMPLING ALGORITHMS

In a sense, our complexity results are not “realistic”, and in particular in the ranking model
our positive algorithmic results assume access to each user’s full preferences. Moreover, some
algorithms are allowed to run in polynomial time in the number of passwords N , which can
be huge. In this section we use our complexity results as guidelines in the design of practical
sampling algorithms.

In more detail, we are given oracle access to rules R1, ..., Rm (e.g., we can ask whether
or not a password w ∈ Ri) and we are allowed to sample from the distribution induced by
the password composition policy AS for any S ⊆ [m]. Less formally, a sample is equivalent
to asking a random user what her favorite password is given the current policy.

We will work in the more general ranking model, so there is essentially only one positive
result we can build on: Theorem 3.2, a polynomial time algorithm for constant k in the
positive rules setting. When adapting this algorithm to the sampling setting, we cannot
expect it to work perfectly due to the inherent uncertainty of this domain. Instead we
expect the algorithm to find an ε-optimal password composition policy with probability at
least 1− δ, for any given ε and δ. Crucially, the number of samples must not depend on the
number of passwords N , and must have a polynomial dependence on the other parameters.

Formally, we let S∗ ⊆ [m] denote the optimal collection of positive rules to activate (for
all S ⊆ [m], p (1,AS∗) ≤ p (1,AS)). Our goal is to find a (1, ε)-approximation S ⊆ [m] to
p (1,AS∗), that is, S such that p (1,AS) ≤ p (1,AS∗) + ε, with probability 1− δ.

We first present Algorithm 5 that achieves our goal for k = 1; this algorithm is an
adaptation of Algorithm 3.

Theorem 5.1. Algorithm 5 runs in polynomial time in m, 1/ε, 1/δ, requires
O
(
m log (m/δ) /ε2

)
samples and returns a (1, ε)-approximation S ⊆ {1, ...,m} of p (1,AS∗)

with probability at least 1− δ.

Proof. Let

BADi =
{
∃w ∈ ASi

∣∣∣sw
s
− Pr [w ASi

]
∣∣∣ ≥ ε/2} ,

denote the event that our probability estimates are off during iteration i. Claim 5.2 bounds
the probability of any bad event. The proof of Claim 5.2 can be found in the full version of
this paper [Blocki et al. 2013]. The proof involves bucketing the passwords based on their
probability, applying Chernoff Bounds to upper bound the probability of a bad estimate for
our passwords in each bucket, and repeatedly applying union bounds.

Claim 5.2. Pr [∃i, BADi] ≤ δ .
117



Proceedings Article

Algorithm 5 SampleAndEliminate

Positive Rules: R1, ..., Rm
Input: ε, δ
Initialize: S0 ← [m], i← 0
s← 100

ε2 log
(
4m
εδ

)
while Si 6= ∅ do

Sample: Draw samples w1, ..., ws according to the distribution Pr [w ASi ]
W ← {w1, ..., ws}
sw ← |{j wj = w}| for each w ∈W .
w∗ ← arg max {sw w ∈W} . w∗ is the most frequently sampled password
p̂i ← sw∗

s . p̂i is our estimation of Pr [w∗ ASi
]

if p̂i ≤ ε/2 then return Si . The current solution is already sufficiently good
else

Si+1 ← Si − {j w∗ ∈ Sj} . Deactivate all rules that contain w∗

i← i+ 1
return Si∗ where i∗ = arg max {p̂jj ≤ m} .

For the rest of the analysis we assume that no bad event occurs. Let p∗ =
minS⊆[m] p (1,AS) and suppose that AS∗ ⊆ ASi . Clearly, this is true when i = 0. If
p̂i ≥ ε/2+p∗ then Pr [w∗ AS∗ ] ≥ Pr [w∗ ASi

] > p∗ so that w∗ /∈ AS∗ . Hence, AS∗ ⊆ ASi+1

and the property is maintained for at least one more iteration. If instead p̂i < ε/2 + p∗

then we have p̂i∗ ≤ p̂i ≤ p∗ + ε/2 so for each w ∈ ASi∗ we have Pr [w ASi∗ ] ≤ p∗ + ε. We
conclude that the solution Si∗ is a (1, ε)-approximation.

We next explain how to extend Algorithm 2 to (1, ε)-approximate the optimal p (k,AS)
for any constant k.

Theorem 5.3. There is an algorithm which runs in polynomial time (in m, 1/ε, δ), takes
a polynomial number of samples, and returns a (1, ε)-approximation S ⊆ [m] of p (k,AS∗)
with probability at least 1− δ.

Proof sketch. To extend Algorithm 2 to (1, ε)-approximate p (k,AS) for constant k

we need one more idea. We cannot simply obtain a reduced password space P̂ by reducing
preference lists because we can only sample from our distribution. Notice that for any S ⊆
[m] such that i ∈ S we have Pr [w AS ] ≤ Pr

[
w A{i}

]
so to obtain a (1, ε)-approximation

it is sufficient to limit our attention to passwords in the following set

P̂ =
{
w ∃i,Pr

[
w A{i} ≥

ε

k

]}
.

We can obtain a superset of P̂ by sampling. For each positive rule Ri we draw s independent
samples from the distribution A{i} and set

Ti =
{
w

sw
s
>

ε

2k

}
.

Intuitively, a password w is included in Ti if and only if our estimated probability is suffi-
ciently large. Let T =

⋃
i Ti. For a sufficiently large sample size s = O (poly (m, k, 1/ε, 1/δ))

we can apply Chernoff Bounds to argue that with probability 1 − δ (1) |T | is small, i.e.,

O (poly (m, k, 1/ε, 1/δ)), and (2) T ⊃ P̂ .

6. EXPERIMENTS

To demonstrate how our ideas could apply in a real-world scenario, we simulated runs of
Algorithm 5 by sampling with replacement from the RockYou leaked password set [Imperva

118



Proceedings Article

2010]. The set contains over 32 million passwords with a frequency distribution similar to
that of many other password sets [Bonneau 2012]. Note that all results presented here are
limited by the dataset and assume the normalization model. Working in the normalization
model is crucial because we cannot ask the RockYou users for their preferred password under
a specific policy; an initial distribution over P — which is available to us — is sufficient
though, because it induces a distribution for any policy A.

We selected 21 positive rules that mirror commonly used password composition rules that
are used in practice, and looked at sample sizes s of 100, 500, 1000, 5000, and 10000. The
rules included length requirements, character class requirements, combinations of require-
ments, a dictionary check, etc. (See the full version [Blocki et al. 2013] for a complete listing
of the rules we selected.) For each run with a particular value of s, the algorithm returns
a policy AS for which we can measure p (1,AS) in the original dataset and compare with
the optimal p (1,AS∗), determined from running Algorithm 3 on the original dataset. We
performed 500 runs for each of the five values of s.

To gain an understanding of how policies based on negative rules perform, we took the
complement of the 21 positive rules selected above to get 21 negative rules. We then de-
termined the optimal negative rules policy by calculating S∗ = arg minS⊆[m] p (1,AS) via
brute-force. This was required because we have no equivalent to Algorithm 3 for nega-
tive rules. With this baseline in hand, we designed two näıve algorithms, similar in spirit
to Algorithm 5. There are multiple ways to discard a password in the negative rules set-
ting, and one algorithm makes this decision randomly while the other bans the smallest
subset as determined from the current sample. Again, 500 runs were performed for each
s ∈ {100, 500, 1000, 10000, 50000}.

6.1. Baselines

We examined several baselines for comparison with our algorithm. Table II shows these
baselines, the probability of the most frequent password in the resulting policy, and the
optimal policy as a union or intersection of rules (for clarity, the complement of the union
of negative rules is shown as the intersection of positive rules).

As shown in Table II from the means across policies, randomly selecting a policy from the
power set of rules can be worse than having no policy. The “one rule maximum” baseline
was selected because, if decided based on sampling, only m distributions need be sampled.
Our efficient algorithm requires the same amount of sampling, but can find the optimal
policy over S ⊆ [m] rather than S ∈ {1, ...,m}. Also of interest is the optimal policy with
negative rules, which is over 3x better than the optimal policy with positive rules. However,
as shown in the following section, the performance of our sampling algorithms with negative
rules was far worse than in the positive rules setting.

Table II: Baseline probabilities for the RockYou dataset

Baseline p (1,AS) S
Mean across negative rules policies 1.3×10−2

Mean across positive rules policies 1.0×10−2

All passwords allowed (no policy) 9.2×10−3

One positive rule (S ∈ {1, ...,m}) 6.8×10−4 8 chars, 1 upper, 1 digit
Optimal policy with positive rules 4.4×10−4 14 chars OR 2 symbols OR 8 chars, 1

upper, 1 digit
Optimal policy with negative rules 1.4×10−4 10 chars AND 2 digits AND 1 symbol

AND 1 lowercase AND not in dictio-
nary

119



Proceedings Article

Table III: Performance of Sampling Algorithms with Positive Rules

Sample Size mean p (1,AS) min p (1,AS) % Optimal
100 6.8×10−3 1.2×10−3

500 9.7×10−4 4.4× 10−4 2%
1000 9.5×10−4 4.4× 10−4 10%
5000 6.0×10−4 4.4× 10−4 14%
10000 5.7×10−4 4.4× 10−4 19%

Table IV: Performance of Sampling Algortihms with Negative Rules

Random Decision Ban Smallest
Sample Size mean p (1,AS) min p (1,AS) mean p (1,AS) min p (1,AS)
100 6.8×10−3 1.2×10−3 7.2×10−3 2.3×10−3

500 4.4×10−3 6.3×10−4 9.0×10−3 2.3×10−3

1000 4.3×10−3 4.5×10−4 8.6×10−3 2.3×10−3

5000 6.3×10−3 4.5×10−4 9.2×10−3 9.2×10−3

10000 7.2×10−3 4.5×10−4 9.2×10−3 9.2×10−3

6.2. Performance

In the positive rules setting (see Table III), the algorithm performed extremely well even
at moderate sample sizes. The average policy selected with s = 500 was almost 10x better
than having no policy. At s = 1000, the optimal policy was found 10% of the time (50 out
of 500 times).

In the negative rules setting (see Table IV), however, neither algorithm found the optimal
policy. The “Ban Smallest” heuristic, when faced with a choice between multiple subsets that
contain the most likely password, decides to ban the smallest available subset, disrupting
the space the least. This might seem like an intuitively good choice but, in fact, it fails to
find a better policy than the empty set at large sample sizes. The randomized algorithm
does better (it cannot actually do worse) but still has much worse average case performance
than using our efficient algorithm with positive rules.

7. DISCUSSION

We conclude by discussing some key points.

Where do the rules comes from? Throughout the paper we have assumed that the rules
(whether positive or negative) are given as part of the input; it is not up to us to find these
rules. Our experiments indicate that a collection of intuitive and practical rules can already
give very good results on real data. However, the question of deciding which rules should be
added to our collection is outside the scope of this paper. Much like the problem of feature
selection, it is an interesting problem with real-life implications, which we suspect will be
very difficult in practice.

Alternate policy goals. Our goal [Boztas 1999] has been to minimize p (k,AS). Intuitively,
p (k,AS) represents the probability that an adversary with no background knowledge can
successfully guess the password of a randomly selected user in k tries. A small value of k
optimizes security guarantees against an online guessing attack in which the adversary is
locked out after k failed attempts to login. A much larger value of k (e.g., 232) is necessary
to optimize security against an adversary who has obtained the cryptographic hash of a
password and is able to mount a brute-force dictionary attack [Seeley 1989]. However, the
optimal solutions for p (1,AS) and p

(
232,AS

)
might be completely different. One stronger

goal that we might hope to achieve is to optimize both goals simultaneously. More formally,
can we find a policy S ⊆ [m] such that for every S′ ⊆ [m] and every k ≤ N we have
p (k,AS) ≤ c · p (k,AS′) for some constant c? Unfortunately, the answer is no. For any

120



Proceedings Article

constant c this universal approximation goal is impossible to satisfy in the ranking model
— see Theorem B.1 in the full version of this paper [Blocki et al. 2013].

Other natural goals include α-work factor [Pliam 2000] and a refinement called α-
guesswork [Bonneau 2012] (e.g., maximize the total number of guesses needed to compromise
α-fraction of the accounts). While α-guesswork is an useful metric to analyze the security
of 70 million Yahoo passwords [Bonneau 2012], it may not be a desirable optimization goal
for the organization because it might allow the adversary to crack up to α − ε-fraction of
the accounts with relatively few guesses.

Another interesting direction is to account for an adversary with basic background
information about the user (e.g., e-mail address, username, birthday). It may not always be
realistic to assume that the adversary has no background knowledge because the adversary
can often easily obtain some background knowledge about a user by searching for publicly
available information on the internet. One approach might be to design a rule R to specify
different passwords for different users (e.g., the set of passwords that contain the username
or birthday of the user).

Open Questions. While we were able to prove several hardness results about finding the
optimal password composition policy in the negative rules setting, it is possible that these
hardness results could be circumvented by making mild (hopefully realistic) assumptions
about the underlying password distribution or the rules R1, ..., Rm. Are there efficient algo-
rithms to optimize p (k,AS) in the negative rules setting given realistic assumptions? It is
also possible that mild realistic assumptions could be used to circumvent the impossibility
result of Theorem B.1 [Blocki et al. 2013], and design a universal approximation algorithm.

There are also several interesting technical questions that remain open:

(1) Normalization model with negative rules: Can we efficiently c-approximate p (1,AS∗)
for any constant c? Is there a sub-exponential algorithm (in m) to compute p (1,AS∗)?

(2) Ranking model with positive rules: Can we efficiently c-approximate p (k,AS∗) for some
constant c when k is a parameter?

The future. There is a real need for a principled approach to optimizing password composi-
tion policies. We have taken a first step in this direction by providing an intuitive theoretical
model and showing that it leads to algorithms that perform well on real data. We can only
hope that our work will spark a fundamentally new interaction between theory and practice
in passwords research.

REFERENCES

Alon, N., Moshkovitz, D., and Safra, S. 2006. Algorithmic construction of sets for
k-restrictions. ACM Transactions on Algorithms 2, 2, 153–177.

Arora, S., Barak, B., and Steurer, D. 2010. Subexponential algorithms for unique
games and related problems. In Proc. of FOCS. 563–572.

Austrin, P., Khot, S., and Safra, M. 2011. Inapproximability of vertex cover and
independent set in bounded degree graphs. Theory of Computing 7, 1.

Blocki, J., Komanduri, S., Procaccia, A. D., and Sheffet, O. 2013. Optimizing
password composition policies. CoRR abs/1302.5101.

Bonneau, J. 2012. The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In Proc. of Oakland. 538–552.

Bonneau, J. and Xu, R. 2012. Character encoding issues for web passwords. In Web 2.0
Security & Privacy.

Boztas, S. 1999. Entropies, guessing, and cryptography. Technical report, Department of
Mathematics, Royal Melbourne Institute of Technology.

121



Proceedings Article

Burr, W. E., Dodson, D. F., and Polk, W. T. 2006. Electronic authentication guide-
line. NIST Special Publication 800-63 .

Clair, L., Johansen, L., Enck, W., Pirretti, M., Traynor, P., McDaniel, P., and
Jaeger, T. 2006. Password exhaustion: Predicting the end of password usefulness. Proc.
of ICISS , 37–55.

Cormode, G. and Muthukrishnan, S. 2005. An improved data stream summary: The
count-min sketch and its applications. Journal of Algorithms 55, 1, 58–75.

Doel, K. 2012. Scary logins: Worst passwords of 2012 and how to fix them. Retrieved
1/21/2013.

Florêncio, D. and Herley, C. 2010. Where do security policies come from. In Proc. of
SOUPS. 10.

Fossi, M., Johnson, E., Turner, D., Mack, T., Blackbird, J., McKinney, D., Low,
M. K., Adams, T., Laucht, M. P., and Gough, J. 2008. Symantec report on the
undergorund economy. Retrieved 1/8/2013.

Imperva. 2010. Consumer password worst practices. Retrived 1/22/2013.
Karp, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, Eds. Plenum, 85–103.

Khot, S. 2002. On the power of unique 2-prover 1-round games. In Proc. of STOC.
767–775.

Khot, S. and Regev, O. 2008. Vertex cover might be hard to approximate to within 2-
ε. Journal of Computer and System Sciences 74, 3, 335–349.

Komanduri, S., Shay, R., Kelley, P., Mazurek, M., Bauer, L., Christin, N., Cra-
nor, L., and Egelman, S. 2011. Of passwords and people: measuring the effect of
password-composition policies. In Proc. of CHI. 2595–2604.

Kruger, H., Steyn, T., Medlin, B., and Drevin, L. 2008. An empirical assessment
of factors impeding effective password management. Journal of Information Privacy and
Security 4, 4, 45–59.

Malone, D. and Maher, K. 2012. Investigating the distribution of password choices. In
Proc. of WWW. 301–310.

Pliam, J. 2000. On the incomparability of entropy and marginal guesswork in brute-force
attacks. Proc. of INDOCRYPT , 113–123.

Scarfone, K. and Souppaya, M. 2009. NIST special publication 800-118: Guide to
enterprise password management (draft).

Schechter, S., Herley, C., and Mitzenmacher, M. 2010. Popularity is everything:
A new approach to protecting passwords from statistical-guessing attacks. In Proc. of
HotSec. 1–8.

Seeley, D. 1989. Password cracking: A game of wits. Communications of the ACM 32, 6,
700–703.

Weir, M., Aggarwal, S., Collins, M., and Stern, H. 2010. Testing metrics for pass-
word creation policies by attacking large sets of revealed passwords. In Proc. of CCS.
162–175.

Witty, R., Brittain, K., and Allen, A. 2004. Justify identity management investment
with metrics. Gartner Group report.

122




