Modal Ranking: A Uniquely Robust Voting Rule

Ioannis Caragiannis
University of Patras
caragian@ceid.upatras.gr

Ariel D. Procaccia
Carnegie Mellon University
arielpro@cs.cmu.edu

Nisarg Shah
Carnegie Mellon University
nkshah@cs.cmu.edu

Abstract
Motivated by applications to crowdsourcing, we study voting rules that output a correct ranking of alternatives by quality from a large collection of noisy input rankings. We seek voting rules that are supremely robust to noise, in the sense of being correct in the face of any “reasonable” type of noise. We show that there is such a voting rule, which we call the modal ranking rule. Moreover, we establish that the modal ranking rule is the unique rule with the preceding robustness property within a large family of voting rules, which includes a slew of well-studied rules.

Introduction
The emergence of crowdsourcing platforms and human computation systems (Law and von Ahn 2011) motivates a reexamination of an approach to voting that dates back to the Marquis de Condorcet (1785). He suggested that voters should be viewed as noisy estimators of a ground truth — a ranking of the candidates by their true quality. A noise model governs how voters make mistakes. For example, under the noise model suggested by Condorcet — also known today as the Mallows (1957) noise model — each voter ranks each pair of alternatives in the correct order with probability $p > 1/2$, and in the wrong order with probability $1 - p$ (roughly speaking). This specific noise model is quite unrealistic, and, more generally, the very idea of objective noise is arguable in the context of political elections, where opinions are subjective and there is no ground truth. However, the noisy voting setting is a perfect fit for crowdsourcing, where objective estimates provided by workers — often as votes (Little et al. 2010; Mao, Procaccia, and Chen 2013) — must be aggregated.

From this viewpoint, Condorcet and, more eloquently, Young (1988), argued that a voting rule — which aggregates input rankings into a single output ranking — should output the ranking that is most likely to be the ground truth ranking, under the given noise model. This approach has inspired a significant number of recent papers by AI researchers (Conitzer and Sandholm 2005; Conitzer, Rognlie, and Xia 2009; Elkind, Faliszewski, and Slinko 2010; Xia, Conitzer, and Lang 2010; Xia and Conitzer 2011; Lu and Boutilier 2011; Procaccia, Reddi, and Shah 2012; Mao, Procaccia, and Chen 2013), some of which aim to design voting rules that are maximum likelihood estimators (MLEs) specifically for crowdsourcing settings.

But the maximum likelihood estimation requirement may be too stringent. Caragiannis et al. (2013) point out that a voting rule may be an MLE for a specific noise model, but in realistic settings the noise can take unpredictable forms (Mao, Procaccia, and Chen 2013). Instead, they propose the following robustness property, called accuracy in the limit: as the number of votes grows, the voting rule should output the ground truth ranking with high probability, i.e., with probability approaching one. This allows a single voting rule to be robust against multiple noise models. Moreover, the focus on a large number of votes is natural in the context of crowdsourcing systems — the whole point is to aggregate information provided by a massive crowd!

In this paper, we seek voting rules that are extremely robust against unpredictable noise. Our research challenge is to find voting rules that are robust (in the accuracy in the limit sense) against any “reasonable” noise model.

Our results. We give a rather clear-cut solution to the preceding research challenge: There is a voting rule that is robust against any “reasonable” noise model, and it is unique within a huge family of voting rules. We call this supremely robust voting rule the modal ranking rule. Given a collection of input rankings, the modal ranking rule simply selects the most frequent ranking as the output.

Procaccia, Reddi, and Shah 2012; Mao, Procaccia, and Chen 2013), some of which aim to design voting rules that are maximum likelihood estimators (MLEs) specifically for crowdsourcing settings.

But the maximum likelihood estimation requirement may be too stringent. Caragiannis et al. (2013) point out that a voting rule may be an MLE for a specific noise model, but in realistic settings the noise can take unpredictable forms (Mao, Procaccia, and Chen 2013). Instead, they propose the following robustness property, called accuracy in the limit: as the number of votes grows, the voting rule should output the ground truth ranking with high probability, i.e., with probability approaching one. This allows a single voting rule to be robust against multiple noise models. Moreover, the focus on a large number of votes is natural in the context of crowdsourcing systems — the whole point is to aggregate information provided by a massive crowd!

In this paper, we seek voting rules that are extremely robust against unpredictable noise. Our research challenge is to find voting rules that are robust (in the accuracy in the limit sense) against any “reasonable” noise model.

Our results. We give a rather clear-cut solution to the preceding research challenge: There is a voting rule that is robust against any “reasonable” noise model, and it is unique within a huge family of voting rules. We call this supremely robust voting rule the modal ranking rule. Given a collection of input rankings, the modal ranking rule simply selects the most frequent ranking as the output.

To better understand this result (still on an informal level), we need to clarify two points: What do we mean by “reasonable” noise model? And what is the huge family of voting rules? Starting from the noise model, we employ some additional notions introduced by Carla...
related to the work of Caragiannis, Procaccia, and Shah (2013), who introduced the classes of PM-c and PD-c rules as well as the notions of \(d \)-monotone noise models, accuracy in the limit, and monotone-robustness. Their main result is a characterization of the distance metrics \(d \) for which all PM-c and PD-c rules are monotone-robust. In other words, they fixed the family of voting rules to be PM-c or PD-c rules, and asked which distance metrics induce noise models for which all the rules in these families are robust. While the answer is a family of distance metrics that contains three popular distance metrics, it does not contain several other prominent distance metrics — moreover, it is by no means clear that natural distance metrics are the ones that induce the noise one encounters in practice. In contrast, instead of fixing the family of rules, we fix the family of distances to be all possible distance metrics \(d \), and characterize the “family” of voting rules that are monotone-robust with respect to any \(d \) (this family turns out to be a singleton).

On a technical level, we view vectors of rankings as points in \(\mathbb{Q}^{m!} \) (\(m! \) is the number of possible rankings), where each coordinate represents the fraction of times a ranking appears in the profile. This geometric approach to the analysis of voting rules was initiated by Young (1975), and used by various other authors (Saari 1995; 2008; Xia and Conitzer 2009; Conitzer, Rognlie, and Xia 2009; Obraztsova et al. 2013; Mossel, Procaccia, and Rácz 2013).

Preliminaries

Let \(A \) be the set of alternatives, where \(|A| = m \). Let \(\mathcal{L}(A) \) be the set of rankings (linear orders) over \(A \), and \(\mathcal{D}(\mathcal{L}(A)) \) be the set of distributions over \(\mathcal{L}(A) \). A vote \(\sigma \) is a ranking in \(\mathcal{L}(A) \), and a profile \(\pi \) is a collection of votes. A voting rule (sometimes also known as a “rank aggregation rule”) is formally a deterministic (resp., randomized) social welfare function (SWF) that maps every profile to a ranking (resp., a distribution over rankings). We focus on randomized SWFs. Deterministic SWFs are a special case where the output distributions are centered at a single ranking. In this paper we do not study social choice functions (SCFs), which map each profile to a (single) selected alternative.

Families of SWFs. In order to capture many SWFs simultaneously, our results employ the definitions of three broad families of SWFs.

- **PM-c rules** (Caragiannis, Procaccia, and Shah 2013): For a profile \(\pi \), the pairwise-majority (PM) graph is a directed graph whose vertices are the alternatives, and there exists an edge from \(a \in A \) to \(b \in A \) if a strict majority of the voters prefer \(a \) to \(b \). A randomized SWF \(f \) is called pairwise-majority consistent (PM-c) if for every profile \(\pi \) with a complete acyclic PM graph whose vertices are ordered according to \(\sigma \in \mathcal{L}(A) \), we have \(\Pr[f(\pi) = \sigma] = 1 \).

- **PD-c rules** (Caragiannis, Procaccia, and Shah 2013): In a profile \(\pi \), alternative \(a \) is said to position-dominate alternative \(b \) if for every \(k \in \{1, \ldots, m-1\} \), (strictly) more voters rank \(a \) in first \(k \) positions than \(b \). The position-dominance (PD) graph is a directed graph whose vertices are the alternatives, and there exists an edge from \(a \) to \(b \) if \(a \) position-dominates \(b \). A randomized SWF \(f \) is called position-dominance consistent (PD-c) if for every profile \(\pi \) with a complete acyclic PD graph whose vertices are ordered according to \(\sigma \in \mathcal{L}(A) \), we have \(\Pr[f(\pi) = \sigma] = 1 \).

Related work. Our paper is most closely related to the work of Caragiannis, Procaccia, and Shah (2013), who introduced the classes of PM-c and PD-c rules as well as the notions of \(d \)-monotone noise models, accuracy in the limit, and monotone-robustness. Their main result is a characterization of the distance metrics \(d \) for which all PM-c and PD-c rules are monotone-robust. In other words, they fixed the family of voting rules to be PM-c or PD-c rules, and asked which distance metrics induce
• GSRs (Xia and Conitzer 2008): We say that two vectors \(y, z \in \mathbb{R}^k \) are equivalent (denoted \(y \sim z \)) if for every \(i, j \in [k] \) we have \(y_i \geq y_j \iff z_i \geq z_j \). We say that a function \(g : \mathbb{R}^k \rightarrow \mathcal{D}(\mathcal{L}(A)) \) is compatible if \(y \sim z \) implies \(g(y) = g(z) \). A generalized scoring rule (GSR) is given by a pair of functions \((f, g)\), where \(f : \mathcal{L}(A) \rightarrow \mathbb{R}^k \) maps every ranking to a \(k \)-dimensional vector, a compatible function \(g : \mathbb{R}^k \rightarrow \mathcal{D}(\mathcal{L}(A)) \) maps every \(k \)-dimensional vector to a distribution over rankings, and the output of the rule on a profile \(\pi = (\sigma_1, \ldots, \sigma_n) \) is given by \(g(\sum_{i=1}^{n} f(\sigma_i)) \). GSRs are characterized by two social choice axioms (Xia and Conitzer 2009), and have interesting connections to machine learning (Xia 2013). While GSRs were originally introduced as deterministic SCFs, the definition naturally extends to (possibly) randomized SWFs.

Noise models. A noise model \(G \) is a collection of distributions over rankings. For every \(\sigma^* \in \mathcal{L}(A) \), \(G(\sigma^*) \) denotes the distribution from which noisy estimates are generated when the ground truth is \(\sigma^* \). The probability of sampling \(\sigma \in \mathcal{L}(A) \) from this distribution is denoted by \(\Pr_G[\sigma ; \sigma^*] \).

In order to rule out noise models that are completely outlandish, we focus on \(d \)-monotonic noise models with respect to a distance metric \(d \), using definitions from the work of Caragiannis et al. (2013). In more detail, a distance metric \(d(\cdot, \cdot) \) over \(\mathcal{L}(A) \) is a function \(d(\cdot, \cdot) \) that satisfies the following properties for all \(\sigma, \sigma', \sigma'' \in \mathcal{L}(A) \):

1. \(d(\sigma, \sigma') \geq 0 \) and \(d(\sigma, \sigma') = 0 \) if and only if \(\sigma = \sigma' \).
2. \(d(\sigma, \sigma') = d(\sigma', \sigma) \), and
3. \(d(\sigma, \sigma'') + d(\sigma'', \sigma') \geq d(\sigma, \sigma') \).

A noise model \(G \) is called \(d \)-monotone for a distance metric \(d \) if for all \(\sigma, \sigma', \sigma'' \in \mathcal{L}(A) \), \(\Pr_G[\sigma ; \sigma^*] \geq \Pr_G[\sigma' ; \sigma^*] \) if and only if \(d(\sigma, \sigma^*) \leq d(\sigma', \sigma^*) \). That is, the closer a ranking is to the ground truth, the higher its probability.

Robust SWFs. We are interested in SWFs that can recover the ground truth from a large number of i.i.d. noisy estimates. Formally, an SWF \(f \) is called accurate in the limit with respect to a noise model \(G \) if, given an arbitrarily large number of samples from \(G \) with any ground truth \(\sigma^* \), the rule outputs \(\sigma^* \) with arbitrarily high accuracy. That is, for every \(\sigma^* \in \mathcal{L}(A) \), \(\lim_{n \rightarrow \infty} \Pr[f(\pi^n) = \sigma^*] = 1 \), where \(\pi^n \) denotes a profile consisting of \(n \) i.i.d. samples from \(G(\sigma^*) \). A voting rule \(f \) is called monotone-robust with respect to a distance metric \(d \) if it is accurate in the limit for all \(d \)-monotonic noise models.

Modal Ranking is Unique Within GSRs

In this section, we characterize the modal ranking rule — which selects the most common ranking in a given profile — as the unique rule that is monotone-robust with respect to all distance metrics, among a wide subfamily of GSRs. For this, we use a geometric equivalent of GSRs introduced by Mossel, Procaccia, and Rácz (2013) called “hyperplane rules.” Like GSRs, hyperplane rules were also originally defined as deterministic SCFs. Below, we give the natural extension of the definition to (possibly) randomized SWFs.

Given a profile \(\pi \), let \(x_\pi^n \) denote the fraction of times the ranking \(\sigma \in \mathcal{L}(A) \) appears in \(\pi \). Hence, the point \((x_\pi^n)_{\sigma \in \mathcal{L}(A)} \) lies in a probability simplex \(\Delta^m \). This allows us to use rankings from \(\mathcal{L}(A) \) to index the \(m! \) dimensions of every point in \(\Delta^m \). Formally,

\[
\Delta^m = \left\{ x \in \mathbb{Q}^m \mid \sum_{\sigma \in \mathcal{L}(A)} x_{\sigma} = 1 \right\}.
\]

Importantly, note that \(\Delta^m \) contains only points with rational coordinates. Weights \(w_\sigma \in \mathbb{R} \) for all \(\sigma \in \mathcal{L}(A) \) define a hyperplane \(H \) where \(H(x) = \sum_{\sigma \in \mathcal{L}(A)} w_{\sigma} \cdot x_{\sigma} \) for all \(x \in \Delta^m \). This hyperplane divides the simplex into three regions; the set of points on each side of the hyperplane, and the set of points on the hyperplane.

Definition 1 (Hyperplane Rules). A hyperplane rule is given by \(r = (H, g) \), where \(H = \{H_i \}_{i=1}^{n} \) is a finite set of hyperplanes, and \(g : \{+,0,-\}^n \rightarrow \mathcal{D}(\mathcal{L}(A)) \) is a function that takes as input the signs of all the hyperplanes at a point and returns a distribution over rankings. Thus, \(r(\pi) = g(\text{sgn}(H(x_\pi))) \), where \(\text{sgn}(H(x_\pi)) = (\text{sgn}(H_1(x_\pi)), \ldots, \text{sgn}(H_n(x_\pi))) \), and \(\text{sgn} : \mathbb{R} \rightarrow \{+,0,-\} \) is the sign function given by \(\text{sgn}(x) = + \) if \(x > 0 \), \(\text{sgn}(0) = 0 \), and \(\text{sgn}(x) = - \) if \(x < 0 \).

Next, we state the equivalence between hyperplane rules and GSRs in the case of randomized SWFs. This equivalence was established by Mossel et al. (2013) for deterministic SCFs; it uses the output of a given GSR for each set of compatible vectors to construct the output of its corresponding hyperplane rule in each region, and vice-versa. Simply changing the output of the \(g \) functions of both the GSR and the hyperplane rule from a winning alternative (for deterministic SCFs) to a distribution over rankings (for randomized SWFs) and keeping the rest of the proof intact shows the equivalence for randomized SWFs.

Lemma 1. For randomized social welfare functions, the class of generalized scoring rules coincides with the class of hyperplane rules.

We impose a technical restriction on GSRs that has a clear interpretation under the geometric hyperplane equivalence. Intuitively, it states that if the rule outputs the same ranking (without ties) almost everywhere around a point \(x_\pi \) in the simplex, then the rule must output the same ranking (without ties) on \(\pi \) as well. More formally, consider the regions in which the simplex is divided by a set of hyperplanes \(H \). We say that a region is interior if none of its points lie on any of the hyperplanes in \(H \), that is, if for every point \(x \) in the region, \(\text{sgn}(H(x)) \) does not contain any zeros.

For \(x \in \Delta^m \), let \(S(x) = \{ y \in \Delta^m | \forall \sigma \in \mathcal{L}(A), x_{\sigma} = 0 \Rightarrow y_{\sigma} = 0 \} \)
denote the subspace of points that are zero in every coordinate where \(x \) is zero. We say that an interior region is adjacent to \(x \) if its intersection with \(S(x) \) contains points arbitrarily close to \(x \).

Definition 2 (No Holes Property). We say that a hyperplane rule (generalized scoring rule) has no holes if it outputs a ranking \(\sigma \) with probability 1 on a profile \(\pi \) whenever it outputs \(\sigma \) with probability 1 in all interior regions adjacent to \(x^\pi \).

When this property is violated, we have a point \(x^\pi \) such that the output of the rule on \(x^\pi \) is different from the output of the rule almost everywhere around \(x^\pi \), creating a hole at \(x^\pi \). We later show (Theorem 2) that the no holes property is a very mild restriction on GSRs.

We are now ready to formally state our main result.

Theorem 1. Let \(r \) be a (possibly) randomized generalized scoring rule without holes. Then, \(r \) is monotone-robust with respect to all distance metrics if and only if \(r \) coincides with the modal ranking rule on every profile with no ties (i.e., \(r \) outputs the most frequent ranking with probability 1 on every profile where it is unique).

Before proving the theorem, we wish to point out three subtleties. First, our assumption of accuracy in the limit imposes a condition on the rule as the number of votes goes to infinity. This has to be translated into a condition on all finite profiles; we do this by leveraging the structure of generalized scoring rules.

Second, if there are several rankings that appear the same number of times, a monotone-robust rule can actually output any ranking with impunity, because in the limit this event happens with probability zero.

Third, every noise model \(G \) that is monotone with respect to some distance metric satisfies \(\Pr_G[\sigma^*;\sigma^*] > \Pr_G[\sigma;\sigma^*] \) for all pairs of different rankings \(\sigma,\sigma^* \in \mathcal{L}(A) \). It seems intuitive that the converse holds, i.e., if a noise model satisfies \(\Pr_G[\sigma^*;\sigma^*] > \Pr_G[\sigma;\sigma^*] \) for all \(\sigma \neq \sigma^* \) then there exists a distance metric \(d \) such that \(G \) is monotone with respect to \(d \) — but this is false. Hence, our condition asks for accuracy in the limit for noise models that are monotone with respect to some metric, instead of just assuming accuracy in the limit with respect to all noise models where the ground truth is the unique mode.

Proof of Theorem 1. Let \(r \) be a (possibly) randomized generalized scoring rule without holes. Using Lemma 1, we represent \(r \) as a hyperplane rule. Let \(r = (\mathcal{H},f) \) where \(\mathcal{H} = \{H_i\}_{i=1} \) is the set of hyperplanes.

First, we show the simpler forward direction. Let \(r \) output the most frequent ranking with probability 1 on every profile where it is unique. We want to show that \(r \) is monotone-robust with respect to all distance metrics. Take a distance metric \(d \), a monotone noise model \(G \), and a true ranking \(\sigma^* \). We need to show that \(r \) outputs \(\sigma^* \) with probability 1 given infinitely many samples from \(G(\sigma^*) \).

Note that \(d \) satisfies \(d(\sigma^*,\sigma^*) = 0 < d(\sigma,\sigma^*) \) for all \(\sigma \neq \sigma^* \). Hence, \(G \) must satisfy \(\Pr_G[\sigma^*;\sigma^*] > \Pr_G[\sigma;\sigma^*] \) for all \(\sigma \neq \sigma^* \). Now, given infinite samples from \(G(\sigma^*) \), \(\sigma^* \) becomes the unique most frequent ranking with probability 1. Thus, \(r \) outputs \(\sigma^* \) with probability 1 in the limit, as required.

For the reverse direction, let \(r \) be \(d \)-monotone-robust for all distance metrics \(d \). Take a profile \(\pi^* \) with a unique most frequent ranking \(\sigma^* \). Recall that \(x^\pi \) denotes the fraction of times \(\sigma \) appears in \(\pi^* \) and note that \(x^\pi_{\sigma^*} > x^\pi_\sigma \) for all \(\sigma \neq \sigma^* \). We also denote by \(X^\pi \) the number of times \(\sigma \) appears in \(\pi^* \).

The rest of the proof is organized in three steps. First, we define a distance metric \(d \), a \(d \)-monotone noisy model \(G \), and a true ranking. Second, we show that given samples from \(G(\sigma^*) \), in the limit \(r \) outputs \(\sigma^* \) with probability 1 in every interior region adjacent to \(x^\pi \). Finally, we use the no holes property of \(r \) to argue that \(\Pr[r(\pi^*) = \sigma^*] = 1 \).

Step 1: We define \(d \) as

\[
d(\sigma,\sigma') = \begin{cases}
\max(1,|X^\pi_{\sigma^*} - X^\pi_{\sigma'}|) & \text{if } \sigma \neq \sigma', \\
0 & \text{otherwise.}
\end{cases}
\]

We claim that \(d \) is a distance metric. Indeed, the first two axioms are easy to verify. The triangle inequality \(d(\sigma,\sigma'') \leq d(\sigma,\sigma') + d(\sigma'',\sigma') \) holds trivially if any two of the three rankings are equal. When all three rankings are distinct,

\[
d(\sigma,\sigma''') + d(\sigma'',\sigma')
= \max(1,|X^\pi_{\sigma^*} - X^\pi_{\sigma'''}|) + \max(1,|X^\pi_{\sigma''} - X^\pi_{\sigma'}|)
\geq \max(1 + 1,|X^\pi_{\sigma^*} - X^\pi_{\sigma'''}| + |X^\pi_{\sigma''} - X^\pi_{\sigma'}|)
\geq \max(1,|X^\pi_{\sigma^*} - X^\pi_{\sigma'}|) = d(\sigma,\sigma').
\]

Now, define the noise model \(G \) where

\[
\Pr_G[\sigma;\sigma'] = \frac{1/(1 + d(\sigma,\sigma'))}{\sum_{\tau \in \mathcal{L}(A)} 1/(1 + d(\tau,\sigma'))}
\]

for \(\sigma' \neq \sigma^* \) and \(\Pr_G[\sigma;\sigma^*] = x^\pi_{\sigma^*} \). Note that \(G \) is trivially \(d \)-monotone for true rankings other than \(\sigma^* \). Denoting the number of votes in \(\pi^* \) by \(n^* \), since \(\sigma^* \) is the unique most frequent ranking, we have that \(d(\sigma,\sigma^*) = n^*(x^\pi_{\sigma^*} - x^\pi_{\sigma}) \) for all \(\sigma \neq \sigma^* \). Hence, \(\Pr_G[\sigma_1;\sigma^*] \geq \Pr_G[\sigma_2;\sigma^*] \) if and only if \(d(\sigma_1,\sigma^*) \leq d(\sigma_2,\sigma^*) \) and \(G \) is also \(d \)-monotone for the true ranking \(\sigma^* \). We conclude that \(G \) is a \(d \)-monotone noisy model.

Step 2: Let \(\pi_n \) denote a profile consisting of \(n \) i.i.d. samples from \(G(\sigma^*) \). Since \(r \) is monotone-robust for every distance metric, we have

\[
\lim_{n \to \infty} \Pr[r(\pi_n) = \sigma^*] = 1.
\]

If \(\pi^* \) has only one ranking, then only that ranking will ever be sampled. Hence, we will have \(\Pr[x^\pi_n = x^\pi_{\pi^*}] = 1 \), and Equation (1) would imply that the rule must output \(\sigma^* \) with probability 1 on \(\pi^* \).

Assume that \(\pi^* \) has at least two distinct votes. We want to show that \(r \) outputs \(\sigma^* \) with probability 1 in
every interior region adjacent to x^π_\ast. As $n \to \infty$, the distribution of x^π_\ast tends to a Gaussian with mean x^π_\ast and concentrated on the hyperplane
\[\sum_{\sigma \in L(A) | \sigma_3^\pi > 0} x_{\sigma} = 1. \]

This follows from the multivariate central limit theorem; see (Mossel, Procaccia, and Rác 2013) for a detailed explanation. Note that the sum ranges only over the rankings that appear in π^* because in the distribution $G(\sigma^*)$, the probability of sampling a ranking σ that does not appear in π^* is zero.

Since the Gaussian lies in the subspace $S(x^\pi_\ast)$, we set the coordinates corresponding to rankings that do not appear in π^* to zero in all the hyperplanes, and remove the hyperplanes that become trivial. Hereinafter we only consider the rest of the hyperplanes, and the regions they form around x^π_\ast, all in the subspace $S(x^\pi_\ast)$.

If none of the hyperplanes pass through x^π_\ast, then there is a unique interior region K which actually contains x^π_\ast as its interior point. In this case, the limiting probability of x^π_\ast falling in K will be 1, as the Gaussian becomes concentrated around x^π_\ast. Thus, Equation (1) implies that r outputs σ^* with probability 1 in K, and therefore on π^*.

If there exists a hyperplane passing through x^π_\ast, then each interior region K adjacent to x^π_\ast is the intersection of finitely many halfspaces whose hyperplanes pass through x^π_\ast. Let \overline{K} and $\overline{S(x^\pi_\ast)}$ denote the closures of K and $S(x^\pi_\ast)$ respectively in \mathbb{R}^m. Thus, \overline{K} is a pointed convex cone with its apex at x^π_\ast, and must subtend a positive solid angle (in $\overline{S(x^\pi_\ast)}$) at its apex since the hyperplanes are distinct. By definition, the solid angle K forms at x^π_\ast is the fraction of volume (the Lebesgue measure in $\overline{S(x^\pi_\ast)}$) covered by \overline{K} in a ball of radius ρ (again in $\overline{S(x^\pi_\ast)}$) centered at x^π_\ast, as $\rho \to 0$ (see, e.g., Section 2 in (Desario and Robins 2011)).

Since the Gaussian is symmetric in $\overline{S(x^\pi_\ast)}$ around x^π_\ast, and the limiting distribution of x^π_\ast converges to the Gaussian, the limiting probability of x^π_\ast lying in K is positive. This holds for every interior region K adjacent to x^π_\ast. Thus, Equation (1) again implies that r outputs σ^* with probability 1 in every interior region adjacent to x^π_\ast.

Step 3: Finally, because r has no holes and it outputs σ^* with probability 1 in every interior region adjacent to x^π_\ast, we conclude that r must also output σ^* with probability 1 on π^*.

To complete the picture, we wish to show that the no holes condition that Theorem 1 imposes on GSRs is indeed unrestrictive, by establishing that many prominent voting rules (in the sense of receiving attention in the computational social choice literature) are GSRs with no holes. One issue that must be formally addressed is that the definitions of prominent voting rules typically do not address how ties are broken. For example, the plurality rule ranks the alternatives by their number of voters who rank them first; but what should we do in case of a tie? Below we adopt uniformly random tie-breaking, which is almost always used in political elections (e.g., by throwing dice or drawing cards in small municipal elections where ties are not unlikely to occur). From a theoretical point of view, randomized tie breaking is necessary in order to achieve neutrality with respect to the alternatives (Moulin 1983). In fact, we have proven the following theorem for a wide family of randomized tie-breaking schemes, but here we focus on uniformly random tie-breaking for ease of exposition.

Theorem 2. Under uniformly random tie-breaking, all positional scoring rules (including plurality and Borda count), the Kemeny rule, single transferable vote (STV), Copeland’s method, Bucklin’s rule, the maximin rule, Slater’s rule, and the ranked pairs method are generalized scoring rules without holes.

The rather intricate proof of Theorem 2 appears in the appendix, which was submitted as supplementary material. The comprehensive list of GSRs with no holes includes all prominent rules that are known to be GSRs (Xia and Conitzer 2008; Mossel, Procaccia, and Rác 2013) — suggesting that the no holes property does not impose a significant restriction beyond the assumption that the rule is a GSR. One prominent rule is conspicuously missing — the fascinating but peculiar Dodgson rule (Dodgson 1876), which is indeed not a GSR (Xia and Conitzer 2008).

Impossibility for PM-c and PD-c Rules

Theorem 1 establishes the uniqueness of the modal ranking rule within a large family of voting rules (GSRs with no holes). Next we further expand this result by showing that no PM-c or PD-c rule is monotone-robust with respect to all distance metrics. Thus, the modal ranking rule is the unique rule that is monotone-robust with respect to all distance metrics in the union of GSRs with no holes, PM-c rules, and PD-c rules. Crucially, as shown in Figure 1, the families of PM-c and PD-c rules are disjoint, and neither one is a strict subset of GSRs.

Theorem 3. For $m \geq 3$ alternatives, no PM-c rule or PD-c rule is monotone-robust with respect to all distance metrics.

In the proof of Theorem 3 we employ the following intuitive but somewhat technical statement, whose proof appears in the appendix.

Lemma 2. Given a specific ranking $\sigma^* \in L(A)$ and a probability distribution D over the rankings of $L(A)$ such that $\arg\max_{\tau \in L(A)} Pr_D[\tau] = \{\sigma^*\}$, there exists a distance metric d over $L(A)$ and a d-monotonic noise model G with $Pr_G[\sigma; \sigma^*] = Pr_D[\sigma]$ for every $\sigma \in L(A)$.

1We remark that considering the closures is necessary since Δ^m contains only points with rational coordinates; hence it (as well as any subset of it) has measure zero.
Proof of Theorem 3. Let $A = \{a_1, \ldots, a_m\}$ be the set of alternatives. We use a_{4-m} as shorthand for $a_4 \succ \ldots \succ a_m$. Fix $\tau = a_1 \succ \ldots \succ a_m$, and $\sigma^* = a_2 \succ a_1 \succ a_3 \succ a_{4-m}$.

First, we prove that no PM-c rule is monotone-robust with respect to all distance metrics. In particular, using Lemma 2, we will construct a distance metric d and a d-monotonic noise model G such that no PM-c rule is accurate in the limit for G.

Consider the distribution D over $\mathcal{L}(A)$ defined as follows:

$$
\begin{align*}
\Pr_D[a_2 \succ a_1 \succ a_3 \succ a_{4-m}] &= \frac{4}{5}, \\
\Pr_D[a_1 \succ a_2 \succ a_3 \succ a_{4-m}] &= \frac{3}{5}, \\
\Pr_D[a_1 \succ a_3 \succ a_2 \succ a_{4-m}] &= \frac{3}{5}, \\
\Pr_D[\sigma] &= 0, \text{ for all } \sigma \text{ not covered above.}
\end{align*}
$$

By Lemma 2, there exist a distance metric d and a d-monotonic noise model G such that $\Pr_G[\sigma; \sigma^*] = \Pr_D[\sigma]$ for every $\sigma \in \mathcal{L}(A)$.

Given infinite samples from $G(\sigma^*)$, a 5/9 fraction — a majority — of the votes have a_1 in the top position. A 7/9 fraction of the votes prefer a_2 to a_3, while all votes prefer a_2 and a_3 to any other alternative besides a_1. Clearly, a_i is preferred to a_{i+1} for $i \geq 4$. Hence, in the PD graph, the alternatives are ordered according to $\tau = a_1 \succ a_2 \succ a_3 \succ a_{4-m}$. Therefore, every PM-c rule outputs τ in the limit, which is not the ground truth. Thus, no PM-c rule is accurate in the limit for G.

The construction for PD-c rules is more complex. Here, we will show that there is a noise model such that, given infinite samples for a specific ground truth, the PD graph of the profile induces a ranking that is different from the ground truth. The distribution D above is not sufficient for our purposes since there are pairs of alternatives (e.g., a_2 and a_3) that have the same probability of appearing in the first three positions of the outcome; hence, the PD graph of profiles with infinite samples may not be complete. Instead, we will use a distribution D' so that all probability values of this kind are different.

Let $0 = \delta_1 < \delta_2 < \ldots < \delta_m$ so that $\sum_{i=1}^m \delta_i = 1$. Define the probability distribution D'' as follows. Pick one out of the m alternatives so that alternative a_i is picked with probability δ_i. Rank alternative a_i last and complete the ranking by a uniformly random permutation of the alternatives in $\mathcal{L}(A) \setminus \{a_i\}$. Now, the distribution D' is defined as follows: With probability $9/10$ (resp., $1/10$), the output ranking is sampled from the distribution D (resp., D'').

The important property of distribution D'' is that for every $k \in [m-1]$, the probability that alternative a_i is ranked in the first k positions is exactly $\frac{1-\delta_i}{m-i}$, i.e., strictly decreasing in i. On the other hand, distribution D has the property that for every $k \in [m-1]$, the probability that alternative a_i is ranked in the first k positions is non-increasing in i. Hence, their linear combination D' has the property that for every $k \in [m-1]$, the probability that alternative a_i is ranked in the first k positions is strictly decreasing in i. Additionally, $\arg\max_{\tau \in \mathcal{L}(A)} \Pr_D[\tau] = \{\sigma^*\}$. Hence, we can apply Lemma 2 to obtain a distance metric d' and a d'-monotonic noise model G' so that an infinite number of samples from $G'(\sigma^*)$ induce a complete PD graph corresponding to the ranking $\tau = a_1 \succ a_2 \succ a_3 \succ a_{4-m}$, which is different from the ground truth σ^*. Thus, no PD-c rule is accurate in the limit for G'.

We conclude that no PM-c rule or PD-c rule is monotone-robust with respect to all distance metrics.

The restriction on the number of alternatives in Theorem 3 is indeed necessary. For two alternatives, $\mathcal{L}(A)$ contains only two rankings, and all reasonable voting rules coincide with the majority rule that outputs the more frequent of the two rankings. It can be shown that, in this case, the majority rule is monotone-robust with respect to all distance metrics.

Caragiannis et al. (2013) show that the union of PM-c and PD-c rules includes all positional scoring rules, Bucklin’s rule, the Kemeny rule, ranked pairs, Copeland’s method, and Slater’s rule. Two prominent SWFs that are neither PM-c nor PD-c are the maximin rule and STV. In the example given in the proof of Theorem 3, the maximin rule and STV would also rank the wrong alternative (a_1) in the first position with probability 1 in the limit. Thus, Theorem 3 gives another proof that prominent voting rules are not monotone-robust with respect to all distance metrics.

Discussion

Perhaps our main conceptual contribution is the realization that the modal ranking rule — a natural voting rule that was previously disregarded — can be exceptionally useful in crowdsourcing settings. Interestingly, from a classic social choice viewpoint the modal ranking rule would appear to be a poor choice. It does satisfy some axiomatic properties, such as Pareto efficiency — if all voters rank x above y, the output ranking places x above y (indeed, the rule always outputs one of the input rankings). But the modal ranking rule fails to satisfy many other basic desiderata, such as monotonicity — if a voter pushes an alternative upwards, and everything else stays the same, that alternative’s position in the output should only improve. So our uniqueness result implies an impossibility: a voting rule that is monotone-robust with respect to any distance metric d and is a GSR with no holes, PD-c rule, or PM-c rule, cannot satisfy the monotonicity property. A similar statement is true for any social choice axiom not satisfied by the modal ranking rule. That said, social choice axioms like monotonicity were designed with subjective opinions, and notions of social justice, in mind. These axioms are incompatible with the settings that motivate our work on a conceptual level, and — as our results show — on a technical level.
Proofs of Two Technical Lemmas

In this section, we first prove Lemma 2 that we used in the proof of Theorem 3.

Lemma 2. Given a specific ranking \(\sigma^* \in \mathcal{L}(A) \) and a probability distribution \(D \) over the rankings of \(\mathcal{L}(A) \) such that \(\arg \max_{\tau \in \mathcal{L}(A)} D(\tau) = \{\sigma^*\} \), there exists a distance metric \(d \) over \(\mathcal{L}(A) \) and a \(d \)-monotonic noise model \(G \) with \(Pr_G[\sigma; \sigma^*] = Pr_d[\sigma] \) for every \(\sigma \in \mathcal{L}(A) \).

Proof. First, let \(V = \{Pr_d[\sigma]|\sigma \in \mathcal{L}(A)\} \) be the set of distinct probability values in \(D \). Now, we construct the distance metric \(d \) as follows. For all \(\sigma \in \mathcal{L}(A) \), set \(d(\sigma, \sigma^*) = d(\sigma^*, \sigma) = \{v \in V|v > Pr_d[\sigma]\} \) for every \(\sigma \in \mathcal{L}(A) \). For every pair of rankings \(\sigma, \sigma' \) different than \(\sigma^* \), we set \(d(\sigma, \sigma') = 0 \) if \(\sigma = \sigma' \) and \(d(\sigma, \sigma') = d(\sigma, \sigma^*) + d(\sigma', \sigma^*) \).
1. Suppose either \(\sigma = \sigma' \) or \(\sigma'' = \sigma^* \). Without loss of generality, let us assume \(\sigma = \sigma^* \). Then, the above inequality is obvious since, by the definition of \(d \),

\[
 d(\sigma', \sigma^*) + d(\sigma^*, \sigma'') \geq d(\sigma', \sigma'')
\]

for all \(\sigma', \sigma'' \in \mathcal{L}(A) \). The inequality clearly holds when any two of the three rankings are identical. If all three rankings are distinct, we take two cases.

1. Suppose that neither \(\sigma \) nor \(\sigma'' \) is equal to \(\sigma^* \). Then, again by the definition of \(d \), the LHS of the above inequality becomes

\[
 d(\sigma^*, \sigma') + 2d(\sigma^*, \sigma') + d(\sigma^*, \sigma'') \geq d(\sigma^*, \sigma') + d(\sigma^*, \sigma'') = d(\sigma, \sigma'').
\]

We now define the noise model \(G \) as

\[
 Pr_G[\sigma; \sigma^*] = Pr_D[\sigma]
\]

for every \(\sigma \in \mathcal{L}(A) \) and

\[
 Pr_G[\sigma; \sigma'] = \frac{1}{(1 + d(\sigma, \sigma'))} \sum \tau \in \mathcal{L}(A) \frac{1}{(1 + d(\tau, \sigma'))}
\]

for \(\sigma' \neq \sigma^* \). The property \(Pr_G[\sigma; \sigma^*] \geq Pr[\sigma'; \sigma^*] \) iff \(d(\sigma, \sigma') \leq d(\sigma', \sigma') \) is obvious if \(\sigma' \neq \sigma^* \). Otherwise, recall that \(Pr_G[\sigma; \sigma^*] = Pr_D[\sigma] \) and, clearly, \(Pr_G[\sigma; \sigma^*] \geq Pr_G[\sigma'; \sigma^*] \) iff \(\{ v \in V | v > \sigma, \sigma \} \leq \{ v \in V | v > \sigma, \sigma' \} \), i.e., \(d(\sigma, \sigma^*) \leq d(\sigma', \sigma^*) \).

We continue with the next technical result which we will use in the proof of (a stronger version of) Theorem 2.

Lemma 3 (Convexity Lemma). Consider a point \(x \in \Delta^m \). Let \(FIX \subseteq \mathcal{L}(A) \), and \(VARY = \mathcal{L}(A) \setminus FIX \). Further, assume that \(\{ \sigma \in \mathcal{L}(A) | x_\sigma = 0 \} \subseteq FIX \), and let \(k = |VARY| \geq 2 \). Define

\[
 V = \{ v \in \{-1, 0, 1\}^m | \forall \sigma,v_\sigma = 0 \Leftrightarrow \sigma \in FIX \}
\]

\[
 \wedge \exists \sigma,v_\sigma = 1 \wedge \exists \sigma,v_\sigma = -1 \}.
\]

For every \(v \in V \), define the orthant

\[
 O^v = \{ y \in \Delta^m | \forall \sigma,v_\sigma = 0 \Rightarrow y_\sigma = x_\sigma
\]

\[
 \wedge v_\sigma = 1 \Rightarrow y_\sigma > x_\sigma
\]

\[
 \wedge v_\sigma = -1 \Rightarrow y_\sigma < x_\sigma \}.
\]

Given points \(x^v \in O^v \) for all \(v \in V \), \(x \in \text{co}\{x^v | v \in V \} \), where \(\text{co} \) denotes the convex hull.

Proof. We prove this by induction on \(k \).

For \(k = 2 \), let \(VARY = \{ \sigma_1, \sigma_2 \} \). Thus, \(O^v \) contains two orthants: one consisting of \(y \)'s where \(y_{\sigma_1} < x_{\sigma_1} \) and \(y_{\sigma_2} > x_{\sigma_2} \), and another consisting of \(y \)'s where \(y_{\sigma_1} > x_{\sigma_1} \) and \(y_{\sigma_2} < x_{\sigma_2} \). We are given a point \(x^1 \) in the former orthant and a point \(x^2 \) in the latter orthant. For both points, the values of coordinates other than \(\sigma_1 \) and \(\sigma_2 \) match those for \(x \). Hence, it is easy to check that

\[
 x = \lambda x^1 + (1 - \lambda)x^2,
\]

where \(\lambda = (x_{\sigma_1} - x_{\sigma_2}^1)/(x_{\sigma_1}^2 - x_{\sigma_2}^2) \).

It is further easy to check that \(0 < \lambda < 1 \). Hence, \(x \in \text{co}\{x^1,x^2\} \).

Suppose the theorem holds for all \(FIX, VARY \) with \(k = |VARY| = d - 1 \), for some \(d \leq m \).

Let us consider \(FIX, VARY \) with \(k = |VARY| = d \). Define \(V \) and \(O^v \) for every \(v \in V \) from \(FIX \). Take any \(\tau \in VARY \), construct \(\tilde{FIX} = FIX \cup \{ \tau \} \), and define \(\tilde{V} \) and \(\tilde{O}^v \) for every \(v \in \tilde{V} \) according to \(\tilde{FIX} \).

If we can find a point \(\tilde{x}^v \in \tilde{O}^v \) for each \(v \in \tilde{V} \) which is also in \(\text{co}\{x^v | v \in V \} \), then due to the induction hypothesis, we have \(x \in \text{co}\{x^v | v \in V \} \). Take any \(v \in \tilde{V} \). We construct \(v^{+1}, v^{-1} \in V \) as follows: \(v^+_\tau = +, v^-_\tau = - \), and \(v^+_\sigma v^-_\sigma = v_\sigma \) for all \(\sigma \neq \tau \). Show that we can find \(\tilde{x}^v \in \tilde{O}^v \) as a convex combination of \(x^{v^+} \) and \(x^{v^-} \). It is easy to check that taking \(\tilde{x}^v = \lambda x^{v^+} + (1 - \lambda)x^{v^-} \) works, where \(\lambda = (x_\tau - x^-_\tau)/(x^+_\tau - x^-_\tau) \). It is easy to check that \(0 < \lambda < 1 \). Further, we have \(\tilde{x}^\tau = x_\tau \) by construction, which is desired because \(\tau \in \tilde{FIX} \). For every \(\sigma \neq \tau \), \(v^+_\sigma v^-_\sigma = v_\sigma \). Hence,

\[
 v_\sigma = + \Rightarrow x^{v^+}_\sigma > x_\sigma \land x^{v^-}_\sigma > x_\sigma \Rightarrow \hat{x}^{v^+} > x_\sigma,
\]

and

\[
 v_\sigma = - \Rightarrow x^{v^-}_\sigma < x_\sigma \land x^{v^+}_\sigma < x_\sigma \Rightarrow \hat{x}^{v^-} < x_\sigma.
\]

For arbitrary \(v \in \tilde{V} \), we found \(\hat{x}^v \in \tilde{O}^v \), which is also in \(\text{co}\{x^v | v \in V \} \) as desired. Thus, \(x \in \text{co}\{x^v | v \in V \} \).

Proof of Lemma 3

Generalized Scoring Rules without Holes

While Theorem 2 is stated with uniformly random tie-breaking, we show that the result holds for a wide family of randomized tie-breaking schemes that we call inclusive tie-breaking.

Definition 3 (Inclusive tie-breaking). A tie-breaking scheme is called inclusive if it assigns a positive probability to each of the tied decisions at every stage.

Such tied decisions could vary for different rules. For rules that assign scores to alternatives and order them according to their scores, it would be choosing the order of alternatives with identical scores. For rules that assign scores to rankings and choose the ranking with the highest score, it would be breaking ties among rankings with identical highest scores.

We note that uniformly random tie-breaking, which assigns equal probability to every decision, is a special case of inclusive tie-breaking. Admittedly, inclusive tie-breaking does not capture deterministic tie-breaking schemes. However, we strongly believe that prominent voting rules other than the modal ranking rule are not monotone-robust with respect to all distance metrics even if a deterministic tie-breaking scheme were used.

Before we begin demonstrating that prominent voting rules are GSRs without holes, we show that the
no holes condition is implied by a property well-known in the literature as consistency. Intuitively, consistency means that taking the union of two profiles where the output of a rule is the same should not change the output. For deterministic SWFs, consistency was first studied by Young and Levenglick (1978), who observed that it is incomparable to, but usually much weaker than, consistency of winning alternative in the case of SCFs. Later, Conitzer and Sandholm (2005) showed that consistency (whether in rankings or in winning alternatives) is a necessary condition for a voting rule to be a maximum likelihood estimator under i.i.d. votes. We formalize a related, but weaker notion of consistency for randomized SWFs.

Weak consistency for rankings: A randomized SWF r is said to satisfy weak consistency for rankings if $\Pr[r(\pi_1) = \sigma] = 1$ and $\Pr[r(\pi_2) = \sigma] = 1$ implies $\Pr[r(\pi_1 \cup \pi_2) = \sigma] = 1$ for all profiles π_1 and π_2, and all rankings $\sigma \in L(A)$. Here, $\pi_1 \cup \pi_2$ denotes the profile representing the union of π_1 and π_2.

For hyperplane rules (generalized scoring rules), weak consistency for rankings is equivalent to convexity of the region where the rule outputs σ with probability 1, for every $\sigma \in L(A)$. Now, we are ready to prove the following implication.

Lemma 4. Any generalized scoring rule satisfying weak consistency for rankings has no holes.

Proof. Take a GSR r that satisfies weak consistency for rankings. Suppose for contradiction that r has a hole at x^π for some profile π. Let r output σ with probability 1 in all interior regions adjacent to x^π, but not on π. Let k be the number of distinct rankings that appear in π. Hence, $\mathcal{S}(x^\pi)$ is a k-dimensional subspace of Δ^m.

If $k = 1$, then π has only one distinct ranking σ. Thus, $x^\pi_1 = 1$ and $x^\pi_2 = 0$ for all $\sigma \neq \sigma$. By the definition of $\mathcal{S}(x^\pi)$, for every $y \in \mathcal{S}(x^\pi)$ we have $y_\sigma = 0$ for all $\sigma' \neq \sigma$. Thus, $y_\sigma = 1$, implying that $\mathcal{S}(x^\pi) = \{x^\pi\}$. Hence, trivially, x^π cannot be a hole.

Let $k > 1$. Define

$$V = \{v \in \{-1, 0, 1\}^m | \forall \sigma, v_\sigma = 0 \iff x^\pi_\sigma = 0 \land \exists \sigma, v_\sigma = 1 \land \exists \sigma, v_\sigma = -1\}.$$

Now, for every $v \in V$, define the orthant

$$O^v = \{y \in \mathcal{S}(x^\pi) | \forall \sigma, v_\sigma = 1 \Rightarrow y_\sigma > x^\pi_\sigma \land v_\sigma = -1 \Rightarrow y_\sigma < x^\pi_\sigma\}.$$

Note that we do not consider the orthants where all the k coordinates are higher (respectively, lower) than those of x^π because such orthants do not have any points in $\mathcal{S}(x^\pi)$ as the sum of those k coordinates must be equal to 1. The rest $3^k - 2$ orthants have non-empty intersection with $\mathcal{S}(x^\pi)$. Further, since the interior regions adjacent to x^π surround it in the space $\mathcal{S}(x^\pi)$ and so do the $3^k - 2$ orthants, each orthant O^v must have a point x^π in some interior region adjacent to x^π, where the output is σ. Now, the convexity lemma (Lemma 3) shows that we can get x^π as a convex combination of points in $\{x^\pi | v \in V\}$,\(^2\) on all of which r outputs σ with probability 1. Hence, due to weak consistency for rankings, r must also output σ with probability 1 on x^π, a contradiction. Hence, r has no holes. \square (Proof of Lemma 4)

Next, define the weighted pairwise majority (PM) graph of a profile as the graph where the alternatives are the vertices and there is an edge from every alternative a to every other alternative b with weight equal to the number of voters that prefer a to b. Now, we define several prominent voting rules; later, we will show that they are generalized scoring rules without holes.

The Kemeny rule: Given a profile π, the Kemeny score of a ranking is the total weight of the edges of the weighted pairwise majority graph of π in its direction. The Kemeny rule selects the ranking with the highest Kemeny score. Ties are broken at the end in choosing among all the rankings with identical highest Kemeny score.

Positional scoring rules: A scoring rule is given by a scoring vector $\alpha = (\alpha_1, \ldots, \alpha_m)$ where $\alpha_i \geq \alpha_{i+1}$ for all $i \in [m]$ and $\alpha_1 > \alpha_m$. Under this rule, for each vote σ in π and $i \in [m]$, α_i points are awarded to the alternative in the i^{th} position. The alternatives are then sorted in the descending order of their total points. Ties are broken at the end in sorting alternatives with identical total points. Some example of positional scoring rules include plurality, Borda count, veto, and k-approval.

Single transferable vote (STV): STV proceeds in rounds, where in each round the alternative with lowest plurality score is eliminated, until only one alternative remains. The rule ranks the alternatives in the reverse of their elimination. At each stage, ties are broken among alternatives with identical plurality score in that stage.

Copeland’s method: The Copeland score of an alternative a in profile π, denoted $PW^\pi(a)$, is the number of outgoing edges from a in the unweighted pairwise majority graph of π, i.e., the number of other alternatives that a defeats in a pairwise election. Copeland’s method ranks the alternative in the non-increasing order of their Copeland scores. For Copeland’s method, an inclusive tie-breaking scheme assigns a positive probability to every possible partial ordering of the alternatives with identical Copeland scores.

The maximin rule: Given a profile π, the maximin score of an alternative a is the minimum of the weights of the edges going out of that alternative in the weighted pairwise majority graph of π, i.e., the number of other alternatives that a defeats in a pairwise election. The maximin rule returns the alternatives in the descending order of their maximin score. Ties are broken at the end in sorting alternatives with identical maximin scores.

The Slater rule: Given a profile π, the Slater rule selects the ranking which minimizes the number of pairs of alternatives on which it disagrees with the PM graph of π. Note that this is in some sense the unweighted version of the Kemeny rule, which minimizes its disagreement with the unweighted PM graph of π rather
than its disagreement with the weighted PM graph of \(\pi \). Ties are broken to choose among ranking with equal disagreement with the unweighted PM graph of \(\pi \).

The Bucklin rule: The Bucklin score of an alternative \(a \) is the minimum \(k \) such that \(a \) is ranked among the first \(k \) positions by a majority of the voters. The Bucklin rule sorts the alternatives in a non-decreasing order according to their Bucklin scores. Ties are broken at the end in sorting alternatives with identical Bucklin scores.\(^3\)

The ranked pairs method: Under the ranked pairs method, given a profile \(\pi \), all ordered pairs of alternatives \((a, a')\) are sorted in a non-increasing order of the weight of the edge from \(a \) to \(a' \) in the weighted PM graph of \(\pi \). Then, starting with the first pair in the list, the method “locks in” the outcome with the result of the pairwise comparison. It proceeds with the next pairs and locks in every pairwise result that does not contradict the partial ordering established so far (by forming a cycle). Finally, the method outputs the total order obtained. Ties are broken initially in sorting ordered pairs of alternatives with identical weight in the weighted PM graph of \(\pi \).

Finally, we are ready to prove a stronger version of Theorem 2. In particular, we show that Theorem 2 holds even if uniformly random tie-breaking is replaced by the more general inclusive tie-breaking.

Theorem 4. Under any inclusive tie-breaking scheme, all positional scoring rules, the Kemeny rule, STV, Copeland’s method, Bucklin’s rule, the maximin rule, Slater’s rule, and the ranked pairs method are generalized scoring rules without holes.

Proof of Theorem 4

It is easy to check that the \(f \) functions of the GSR constructions given in (Xia and Conitzer 2008) and the hyperplanes for the hyperplane rule constructions given in (Mossel, Procaccia, and Rácz 2013) encode enough information (including all the ties) in their input to the \(g \) functions such that it is possible to change the output of \(g \) from a winning alternative (for deterministic SCFs) to any desired distribution over rankings (for randomized SWFs) for the rules mentioned in the statement of the theorem. In particular, these rules can be implemented with any inclusive tie-breaking scheme as GSRs.

It is well-known and easy to check that all positional scoring rules are consistent for rankings (see (Conitzer and Sandholm 2005; Conitzer, Rognlie, and Xia 2009)). Young and Levenglick (1978) showed that the Kemeny rule is also consistent for rankings. Conitzer and Sandholm (2005) showed that STV is consistent for rankings; later it was shown that STV is consistent for rankings only in the absence of tie-breaking (Conitzer, Rognlie, and Xia 2009). It can be checked that under inclusive tie-breaking, STV returns a single ranking with probability 1 if and only if there are no ties. Hence, consistency in the absence of tie-breaking implies weak consistency for rankings. Thus, we conclude the following.

Lemma 5. Under any inclusive tie-breaking scheme, all positional scoring rules, the Kemeny rule, and single transferable vote (STV) satisfy weak consistency for rankings.

Hence, the no holes property of all positional scoring rules, the Kemeny rule, and single transferable vote (STV) follows by Lemmas 4 and 5. Conitzer and Sandholm (2005) showed that other rules such as Bucklin’s rule, Copeland’s method, the maximin rule, and the ranked pairs method are not consistent for rankings even in the absence of ties. Hence, these rules do not satisfy weak consistency for rankings. Still, we will show that they satisfy the no holes property as well, albeit using a different (and significantly more involved) approach.

We take a hyperplane rule \(r \). We want to show that \(r \) does not have a hole at a profile \(\pi \). Let \(k = |\{ x \in \mathcal{L}(A) | x_\pi > 0 \}| \) be the number of distinct rankings in \(\pi \). If \(k = 1 \), then as shown in the proof of Lemma 4, \(S(x^*) = \{ x^* \} \), and there cannot be a hole at \(\pi \). Assume \(k \geq 2 \). For a set of profiles \(P \), let \(x_P = \{ x^* | x^* \in P \} \).

Let \(\text{dim}(\cdot) \) denote the Hausdorff dimension of a given subset of \(\mathbb{R}^m \). For any set \(C \subseteq \Delta^m \), let \(\overline{C} \) denote its closure in \(\mathbb{R}^m \). Hence, we have that \(\text{dim}(\overline{S(x^*)}) = k-1 \), because \(S(x^*) \) has \(k-1 \) free variables.

Lemma 6. Let \(T \) denote the set of points in \(S(x^*) \) that lie on at least one of the hyperplanes of \(r \). Then, \(\text{dim}(\overline{T}) \leq k-2 \).

Proof. Take a hyperplane \(\sum_{\sigma \in \mathcal{L}(A)} w_\sigma x_\sigma = 0 \) of \(r \). Consider its intersection with \(\overline{S(x^*)} \). First, we notice that all but \(k \) of the \(x_\sigma \)'s must be set to zero. Among the remaining \(k \), if we substitute values for \(k-2 \) of the variables, we get two equations in two variables, which can be seen to be independent since the one obtained from the hyperplane has the RHS zero, while the one obtained from \(\overline{S(x^*)} \) has the RHS one. Hence, there is at most one solution of the pair of equations.

That is, every combination of values of \(k-2 \) free variables lead to at most one solution for the remaining variables. Thus, the dimension of the intersection of the hyperplane with \(\overline{S(x^*)} \) is at most \(k-2 \). Taking union over finitely many hyperplanes does not increase the Hausdorff dimension. Hence, we have \(\text{dim}(\overline{T}) \leq k-2 \). \(\Box \) (Proof of Lemma 6)

Next, we describe an outline to prove that the no holes property is satisfied by many prominent voting rules. We consider rules that assign a score to every alternative, and then order them in a non-increasing or non-decreasing order of their scores, breaking ties among alternatives with identical scores. This applies to Copeland’s method, the maximin rule, and Bucklin’s
rule. Such rules return a single ranking with probability 1 if and only if the scores of the alternatives are strictly ordered according to that ranking. Let us denote the score of alternative \(c \) in profile \(\pi \) by \(SC^\pi(c) \).

1. For the sake of contradiction, we assume that the rule under consideration, say \(r \), has a hole at a profile \(\pi \). Hence, \(r \) outputs a ranking \(\tau \) with probability 1 in every interior region adjacent to \(x^\pi \), but there exists a ranking \(\tau' \neq \tau \) such that \(Pr[r(\pi) = \tau'] > 0 \).

2. Since \(\tau' \neq \tau \), there must exist alternatives \(a \) and \(b \) such that \(a \succ \tau b \), but \(b \succ \tau' a \). Due to the inclusive tie-breaking scheme, we must have that
 - \(SC^\pi(b) \geq SC^\pi(a) \), and
 - \(SC(a) > SC(b) \) in every interior region adjacent to \(x^\pi \).

3. Finally, we find a neighborhood of \(\pi \) where we also have \(SC(b) \geq SC(a) \). Formally, we find a set of profiles \(P \) such that
 - for every profile \(\tau' \in P \), \(SC^\tau(b) \geq SC^\tau(a) \), and \(x^\tau \) either lies in an interior region adjacent to \(x^\pi \) or on one of the hyperplanes of \(r \), and
 - \(\text{dim}(x^\pi) = k - 1 \).

Given this, we argue that a contradiction can be reached. Recall that \(T \) is the intersection of the hyperplanes of \(r \) with \(S(x^\pi) \). Suppose that \(x^\pi \subseteq T \). Then, \(x^\pi \subseteq T \), which is impossible because \(\text{dim}(x^\pi) > \text{dim}(T) \) (Lemma 6). Hence, there must exist a profile \(\tau' \) such that \(x^\tau \in x^\pi \setminus T \) lies in an interior region adjacent to \(x^\pi \). However \(SC^\tau(b) \geq SC^\tau(a) \), which is the desired contradiction.

Note that the first two steps are common to all voting rules. All we need to do is to find a set of profiles \(P \) satisfying the stated conditions. For many of the voting rules, \(P \) is obtained by increasing \(x^\pi \), for some \(\sigma^* \in \pi \), and decreasing \(x^\sigma \) for all \(\sigma \neq \sigma^* \) that appear in \(\pi \).

Formally,

\[
P = \left\{ \pi' \mid \forall \sigma \in L(A), \right. \]
\[
\quad \left. x^\pi_{\sigma} \begin{cases} 0, & \text{if } x^\sigma_{\sigma} = 0, \\ x^\pi_{\sigma} + \delta, & \text{if } \sigma = \sigma^*, \\ x^\pi_{\sigma} - \delta_{\sigma}, & \text{otherwise}, \end{cases} \right\} ,
\]

where \(0 < \delta \leq \delta_{\max} \wedge \sum_{\sigma \neq \sigma^*, x^\pi_{\sigma} \geq 0} \delta_{\sigma} = \delta \).

By the construction, for every profile \(\tau' \in P \), the weights of the edges of the weighted PM graph of \(\pi \) increase in the direction of \(\sigma^* \), and decrease in the direction opposite to \(\sigma^* \) (except the edges with weights 1 and 0 do not change). If \(\delta_{\max} \) is chosen to be small enough, this change does not alter the direction of any existing edge in the unweighted PM graph, but breaks all existing ties between pairs of alternatives in one direction or the other. Clearly, \(\text{dim}(x^\pi) = k - 1 \) since decreasing the fractions of all rankings \(\sigma \neq \sigma^* \) with \(x^\sigma_{\sigma} > 0 \) so that the decrements sum up to \(\delta \) gives \(k - 2 \) degrees of freedom choosing \(\delta \) gives another degree of freedom. This observation is very crucial to the proofs for many of the voting rules.

Below, we describe appropriate choices of \(\sigma^* \) and \(\delta_{\max} \) for various prominent voting rules.

Copeland’s method: Recall that for Copeland’s method, \(SC^\pi(c) \) is the number of outgoing edges from \(c \) in the unweighted PM graph of \(\pi \). If there are no ties in the unweighted PM graph of \(\pi \), then choosing any \(\sigma^* \in \pi \) and a small enough \(\delta_{\max} \) ensures that the set \(P \) obtained fits the requirements of step 3 of the outline and preserves all the edges in the unweighted PM graph. Hence, \(SC(b) \geq SC(a) \) is preserved, as required.

In case of ties, let \(TIE^\pi(c) \) be the set of alternatives with which \(c \) is tied in the unweighted PM graph of \(\pi \).

For \(\sigma \in L(A) \), let

\[
s(\sigma) = \sum_{c \in TIE^\pi(b)} \mathbb{I}[b >_\sigma c] - \sum_{c \in TIE^\pi(b)} \mathbb{I}[c >_\sigma b] - \sum_{c \in TIE^\pi(a)} \mathbb{I}[a >_\sigma c] + \sum_{c \in TIE^\pi(a)} \mathbb{I}[c >_\sigma a].
\]

Let \(n^\pi_{x>y} \) denote the number of rankings that prefer alternative \(x \) to alternative \(y \) in \(\pi \). Summing it over all rankings in \(\pi \) and changing the order of the summation in each term, we get

\[
\sum_{i=1}^{n} s(\sigma_i)
\]

\[
= \sum_{c \in TIE^\pi(b)} n^\pi_{b>c} - n^\pi_{c>b} - \sum_{c \in TIE^\pi(a)} n^\pi_{a>c} - n^\pi_{c>a} = 0,
\]

where the last equality holds due to the definitions of \(TIE^\pi(b) \) and \(TIE^\pi(a) \). Also, note that the sum evaluates to zero even if either \(TIE^\pi(b) \) or \(TIE^\pi(a) \) or both are empty sets.

Hence, there exists a ranking \(\sigma^* \in \pi \) such that \(s(\sigma^*) \geq 0 \). There exists a \(\delta_{\max} > 0 \) such that increasing \(x^\pi_{\sigma} \) by at most \(\delta_{\max} \) and decreasing the fractions of other rankings that appear in \(\pi \) would not change the non-tied edges of the PM graph, and among the ties, \(b \) would defeat at least as many previously tied alternatives as \(a \) does. Hence, such a change preserves \(SC(b) \geq SC(a) \). Further, \(\delta_{\max} \) is chosen to be small enough so that for the new profile \(\tau' \), \(x^\pi \) does not fall in an interior region that is not adjacent to \(x^\pi \), i.e., it either lies in an interior region adjacent to \(x^\pi \) or on one of the hyperplanes of Copeland’s method. Thus, the

4We will see that Slater’s rule, which assigns a score to every ranking, can also be handled in this outline.

5We add zero to the Copeland score of an alternative for its tied edges; this is also known as Copeland’s Method.
P such obtained fits the requirements of step 3 of the outline.

Bucklin’s rule: Let $SC^\tau(a) = k$. We know that $SC^\tau(b) \leq SC^\tau(a) = k$. Let $T^\tau(j,c)$ denote the fraction of rankings where c is ranked in the first j positions. Then, by the definition of the Bucklin score,

$$T^\tau(k,b) > 1/2 \quad \text{and} \quad T^\tau(k-1,a) \leq 1/2. \quad (2)$$

If we find σ^* such that the P defined in the outline preserves the two inequalities in Equation (2), then we will have $SC(a) \geq k$ and $SC(b) \leq k$, i.e., $SC(b) \leq SC(a)$ will be preserved.

Let $T^\tau(k,b) = 1/2 + \gamma$. Then, it is easy to check that if the fractions of all the rankings in π are altered by less than $\gamma/m!$, then we would still have $T(k,b) > 1/2$. Now, we simply observe that since $T^\tau(k-1,a) \leq 1/2$, more than half of the rankings in π, in particular, at least one ranking ranks a not in the first $k-1$ positions.

Choosing this as σ^* and taking $\delta_{\text{max}} < \gamma/m!$ (and also small enough so that the new profile does not lie in an interior region not adjacent to x^τ) would preserve both inequalities in Equation (2).

The maximin rule: Here, $SC^\tau(c)$ is the minimum of the weights of the outgoing edges from c in the weighted PM graph of π. Let $MINW^\tau(c)$ denote the set of alternatives to which c has an outgoing edge with the minimum weight in the weighted PM graph of π. Now, take an alternative $c \in MINW^\tau(a)$. Let w be the weight of the edge from a to c. First, we note that $w \neq 1$, because $w = 1$ would imply that a has an outgoing edge with weight 1 to every other alternative, i.e., a is ranked first in all votes in π. This would contradict $SC^\tau(b) \geq SC^\tau(a)$. Next, if $w = 0$, then c beats a in every vote in π. Now, all profiles in $S(x^\tau)$ have the same set of rankings as π, and hence have zero maximin score of a. Thus, $SC(b) \geq SC(a)$ is trivially satisfied in any point of $S(x^\tau)$ and, subsequently, we can define P so that x^P is the union of the interior regions adjacent to x^τ.

Let us assume $w \in (0,1)$. Let $R_{a\rightarrow c}(\pi)$ be the set of rankings in π where $c \succ a$, and define $R_{a\rightarrow c}$ to be the set of rankings in π where $a \succ c$. Since $w \in (0,1)$, $R_{a\rightarrow c} \neq \emptyset$ and $R_{c\rightarrow a} \neq \emptyset$. To obtain P, we do not choose one $\sigma^* \in \pi$, increase its fraction and decrease the fractions of the rest of the rankings in π. Rather, we increase the fractions of all rankings in $R_{c\rightarrow a}$ by a total of δ, and decrease the fractions of all rankings in $R_{a\rightarrow c}$ by a total of δ, where $0 < \delta \leq \delta_{\text{max}}$. Once again, we choose $\delta_{\text{max}} > 0$ small enough so that x^P does not intersect with interior regions not adjacent to x^τ. Increasing the fractions of all rankings $R_{c\rightarrow a}$ so that the increments add up to δ gives $|R_{c\rightarrow a}| - 1$ degrees of freedom. Similarly, decreasing the fractions of all rankings in $R_{a\rightarrow c}$ so that the decrements add up to δ gives another $|R_{a\rightarrow c}| - 1$ degrees of freedom. Finally, choosing δ itself gives one degree of freedom. Hence, the set of profiles P thus obtained satisfy $\dim(x^P) = k - 1$.

Further, note that by construction, the weight of the edge from a to c drops by δ. Hence, the maximin score of a also drops by at least (in fact, by exactly) δ. To show that the rest of the proof follows from the outline, we need to show that the maximin score of b drops by at most δ. For each $d \in A \setminus \{b\}$, the weight of the edge from b to d is the sum of fractions of a subset R_d of rankings in π. Now, the collective weight of rankings in $R_d \cap R_{a\rightarrow c}$ drops by at most δ, and the collective weight of rankings in $R_d \cap R_{c\rightarrow a}$ can only increase. Hence, the weight of each outgoing edge from b drops by at most δ, which means that the maximin score of b also drops by at most δ, as required.

Slater’s rule: Recall that Slater’s rule associates a score to every ranking, and then chooses the ranking with the lowest Slater score,\(^7\) breaking ties to choose among all rankings with the lowest Slater score. Even though Slater’s rule does not associate scores to alternatives, we show that it fits our framework with a little modification. First, if there are no ties in the unweighted PM graph of a profile π, then similarly to Bucklin’s rule, its unweighted PM graph and therefore the Slater scores of all rankings can be preserved in a small enough neighborhood of π, eliminating the possibility of π being a hole. In the general case, we slightly abuse the notation, and use $SC^\tau(\sigma)$ to denote the Slater score of ranking σ in profile π.

As in the step 1 of the outline, assume that π is a hole for Slater’s rule; the rule returns τ with probability 1 in all interior regions adjacent to a^π, but returns a different ranking τ' with a positive probability on π. Then, due to all-inclusivity of the tie-breaking scheme, we must have $SC^\tau(\tau') \leq SC^\tau(\pi)$.\(^8\) We again need to find a σ^* and its associated P. P must satisfy all the conditions in the third step of the outline, except we replace the inequality in the scores of alternatives by the inequality in the scores of rankings, namely $SC(\tau') \leq SC(\tau)$.

Since $SC^\tau(\sigma)$ counts the number of pairwise disagreements of σ with the unweighted PM graph of π, and since small deviations in the fractions x^π_a would not change the edges that are not tied, we concentrate on the edges of the PM graph of π that are tied. Formally, let $TIE(\pi)$ denote the set of ordered pairs of alternatives that are tied in the PM graph of π. For $\sigma \in L(\pi)$, define

$$s(\sigma) = \sum_{(c,d) \in TIE(\pi)} I[c \succ \sigma d] - \sum_{(c,d) \in TIE(\pi)} I[c \prec \sigma d].$$

It is clear that taking $\sigma^* \in \pi$ such that $s(\sigma) \geq 0$ would ensure that in every profile in P, at least as much will be added to the Slater score of τ as to the Slater score.

\(^7\)Recall that Slater’s score is the disagreement of a ranking from a profile, which must be minimized.

\(^8\)As with Bucklin’s rule, the sign of the inequality is reversed because the Slater ranking minimizes the Slater score.
score of \(\tau' \) compared to \(\pi \), ensuring \(SC(\tau') \leq SC(\tau) \). To see why such a ranking exists, we sum \(s(\sigma_1) \) over all votes \(\sigma_1 \) in \(\pi \) and interchanging the order of summations.

\[
\sum_{i=1}^{n} s(\sigma_i) = \sum_{(c,d) \in TIE(\pi)} n_{c \rightarrow d} - \sum_{(c,d) \in TIE(\pi)} n_{c \rightarrow d} \\
= \frac{n}{2} \cdot \left(\left| \{(c,d) \in TIE(\pi) \text{ s.t. } c > \tau, d \} \right| - \left| \{(c,d) \in TIE(\pi) \text{ s.t. } c \succ_{\tau} d \} \right| \right) \\
= 0,
\]

where the last step follows since both terms inside the brackets in Equation (3) are the number of unordered pairs of alternatives that are tied in the PM graph of \(\pi \). Hence, there exists a ranking \(\sigma^* \in \pi \) with \(s(\sigma^*) \geq 0 \), as required. Finally, \(\delta_{\text{max}} \) is chosen so that the non-tied pairs in the PM graph stay non-tied, and the new profile does not fall in an interior region that is not adjacent to \(x^\pi \).

The ranked pairs method: This proof does not follow the general outline given above. For an ordered pair of alternatives \((c,d)\), let \(w^\pi(c,d) \) denote the weight of the edge from \(c \) to \(d \) in the weighted PM graph of \(\pi \). Suppose \(r \) outputs a ranking \(\tau \) with probability 1 in every interior region adjacent to \(x^\pi \), but does not output \(\tau \) with probability 1 on \(\pi \).

Let \(L \) denote the list in the ranked pairs process in \(\pi \) where ordered pairs of alternatives are sorted by their weight. Let \(\Delta \) denote the minimum positive difference between the weights of any two pairs in \(L \). Let \((a,b)\) be the first pair in the list that is chosen with a positive probability and is inconsistent with \(\tau \) (such a pair exists because \(r \) does not output \(\tau \) with probability 1 on \(\pi \)).

Lemma 7. Let \(PRE \) denote the set of pairs in \(L \) that have weight strictly greater than the weight of \((a,b)\). Then, each pair in \(PRE \) must be chosen with probability 1 or 0 in the ranked pairs process on \(\pi \), and the subset that is chosen with probability 1 must be consistent with \(\tau \).

Proof. Let \(L^p \) be the largest prefix of \(L \) such that each pair that every pair in \(L^p \) is chosen with probability 1 or 0 in the ranked pairs process under an inclusive tie-breaking scheme. Let \(C^p \subseteq L^p \) be the set of pairs in \(L^p \) that are chosen with probability 1.

First, we argue that all pairs in \(C^p \) are consistent with \(\tau \). Let \(P \) denote the space of profiles obtained by changing the fractions of all the rankings by at most \(\Delta/(2n!) \). Note that this may only break ties in \(L \), but cannot invert the order of two pairs that were strictly ordered by their weight in \(L \). Similarly to the general outline, \(P \) has Haussdorff dimension \(k-1 \), and hence contains a point in an interior region adjacent to \(x^\pi \). Further, since ties do not matter for pairs in \(P \), all pairs in \(P \) chosen with probability 1 in \(\pi \) would also be chosen with probability 1 in all profiles in \(P \). Hence, all pairs in \(C^p \) must be consistent with \(\tau \).

Since \(r \) does not output \(\tau \) with probability 1 on \(\pi \), \(L^p \neq L \). Consider the group \(G \) of pairs with equal weight that follows \(L^p \). First, \(G \) cannot be consistent with \(C^p \), otherwise it would have been part of \(L^p \). Therefore, there must exist a pair \((c,d) \in G \) that is chosen with a probability strictly in \((0,1)\) (i.e., not equal to 0 or 1). Thus, there must exist a feasible subset of \(G \) such that when it is chosen in the ranked pairs process along with \(C^p \) to produce a partial order \(\ell \), \(\ell \) is inconsistent with \(p \). If \(l \) is consistent with \(\tau \), then \(p \) must be inconsistent with \(\tau \). If \(l \) is inconsistent with \(\tau \), then since \(C^p \) is consistent with \(\tau \), there must exist a pair in \(G \) that is inconsistent with \(\tau \).

In either case, all pairs in \(C^p \) are consistent with \(\tau \), and the group \(G \) of pairs with equal weight that follows \(C^p \) has a pair that is inconsistent with \(\tau \). Thus, \((a,b) \in G \), and \(PRE = L^p \). \(\square \)(Proof of Lemma 7)

Next, we argue that \(0 < w^\pi(a,b) < 1 \). If \(w^\pi(a,b) = 0 \), then \(w^\pi(b,a) = 1 \). An ordered pair with weight 1 is consistent with all rankings in the profile. Hence, the set of ordered pairs in \(\pi \) with weight 1 do not contain a cycle. Thus, they are all selected with probability 1 in the ranked pairs process, which is a contradiction as we assumed that \((a,b)\) is chosen with a positive probability on \(\pi \).

On the other hand, if \(w^\pi(a,b) = 1 \), then all rankings in \(\pi \) must prefer \(a \) to \(b \). However, all profiles in \(S(x^\pi) \) have the same set of rankings as \(\pi \). Hence, the weight of \((a,b)\) is 1 everywhere in \(S(x^\pi) \). Due to the argument presented in the previous paragraph, this implies that in an interior region \(K \) adjacent to \(x^\pi \), \(a \) is preferred to \(b \) with probability 1. This is a contradiction because \(r \) outputs \(\tau \) with probability 1 in \(K \) that prefers \(b \) to \(a \).

Hence, \(0 < w^\pi(a,b) < 1 \). Let \(R_{a \succ b} \) be the set of rankings in \(\pi \) that prefer \(a \) to \(b \), and let \(R_{b \succ a} \) be the set of rankings in \(\pi \) that prefer \(b \) to \(a \). Since \(0 < w^\pi(a,b) < 1 \), we have \(R_{a \succ b} \neq \emptyset \) and \(R_{b \succ a} \neq \emptyset \).

Recall that \(\Delta \) is the minimum positive difference between the weights of any two pairs in \(L \). Choose \(\delta_{\text{max}} = \Delta/2 \). Let \(P \) denote the set of profiles obtained by increasing the fractions of rankings in \(R_{a \succ b} \) by a total of \(\delta \) and decreasing the fractions of the rankings in \(R_{b \succ a} \) by a total of \(\delta \), for \(0 < \delta < \delta_{\text{max}} \). This increases the weight of \((a,b)\) by exactly \(\delta \) and changes the weight of every other pair by at most \(\delta \). Due to the choice of \(\delta_{\text{max}} \), it is clear that the set of pairs with weight greater than that of \((a,b)\) must be \(PRE \) for every profile in \(P \).

Further, the changes in the fractions can only break ties among pairs in \(PRE \), but cannot invert the order of two pairs with different weight in \(\pi \). Since ties do not matter for pairs in \(PRE \), we see that the same subset of pairs in \(PRE \) are chosen in every profile in \(P \).

\footnote{Note that if \(L^p \) has a group of pairs with equal weight, they will all be chosen with probability 1 or all be chosen with probability 0 irrespective of the tie-breaking.}

\footnote{The pairs in \(P \) that were chosen with probability 1 and}
This would imply that under an inclusive tie-breaking scheme, \((a, b)\) has a positive probability of being selected in each profile in \(P\). However, \(P\) has Haussdorff dimension \(k - 1\), and therefore must contain a point in an interior region \(K\) adjacent to \(x^\pi\). This contradicts the fact that \(r\) outputs \(\tau\) that prefers \(b\) to \(a\) with probability 1 in \(K\). Hence, \(\pi\) cannot be a hole.

\[0 \text{ in } \pi\] would still be chosen with probability 1 and 0 respectively.