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Abstract

The fairness notion of maximin share (MMS) guarantee un-
derlies a deployed algorithm for allocating indivisible goods
under additive valuations. Our goal is to understand when we
can expect to be able to give each player his MMS guaran-
tee. Previous work has shown that such an MMS allocation
may not exist, but the counterexample requires a number of
goods that is exponential in the number of players; we give a
new construction that uses only a linear number of goods. On
the positive side, we formalize the intuition that these coun-
terexamples are very delicate by designing an algorithm that
provably finds an MMS allocation with high probability when
valuations are drawn at random.

1 Introduction

We study the classic problem of fairly allocating indivisible
goods among several players. This situation typically arises
in inheritance cases, where a specific collection — contain-
ing, say, jewelry or artworks — is divided between several
heirs, without the use of monetary payments. From the AI
viewpoint, the overarching goal is to mediate such situa-
tions by constructing computer programs that can propose
intelligent compromises, and, indeed, a large body of recent
work in AI focuses on building the foundations necessary to
achieve this goal (Bouveret and Lang 2008; Procaccia 2009;
Cohler et al. 2011; Brams et al. 2012; Bei et al. 2012; Au-
mann, Dombb, and Hassidim 2013; Kurokawa, Lai, and Pro-
caccia 2013; Brânzei and Miltersen 2013; Chen et al. 2013;
Aziz et al. 2014; Karp, Kazachkov, and Procaccia 2014;
Dickerson et al. 2014; Balkanski et al. 2014; Brânzei and
Miltersen 2015; Li, Zhang, and Zhang 2015).

Formally, let the set of players be N = {1, . . . , n}, and let
the set of goods be G, with |G| = m. We denote the value of
player i ∈ N for good g ∈ G by Vi(g) ≥ 0. We assume that
the valuations of the players are additive, that is, for a bundle
of items S ⊆ G, we assume that Vi(S) =

∑
g∈S Vi(g). We

are interested in finding an allocation A1, . . . , An — this is
a partition of G where Ai is the bundle of goods allocated to
player i ∈ N .

Let us now revisit the first sentence above — what do we
mean by “fairly”? Before presenting the fairness notion we
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are interested in, let us briefly discuss two others. An allo-
cation is envy free if for all i, j ∈ N , Vi(Ai) ≥ Vi(Aj);
and it is proportional if for all i ∈ N , Vi(Ai) ≥ Vi(G)/n.
Note that, in our setting, any envy-free allocation is also pro-
portional. While these notions are compelling — and prov-
ably feasible in some fair division settings, such as cake cut-
ting (Brams and Taylor 1996; Procaccia 2013) — they can-
not always be achieved in our setting (say for example when
there are two players and one good).

We therefore focus on a third fairness notion: maximin
share (MMS) guarantee, introduced by Budish (2011). The
MMS guarantee of player i ∈ N is

MMS(i) = max
S1,...,Sn

min
j∈N

Vi(Sj),

where S1, . . . , Sn is a partition of the set of goods G; a par-
tition that maximizes this value is known as an MMS par-
tition. In words, this is the value player i can achieve by
dividing the goods into n bundles, and receiving his least
desirable bundle. Alternatively, this is the value i can guar-
antee by partitioning the items, and then letting all other
players choose a bundle before he does. An MMS alloca-
tion is an allocation A1, . . . , An such that for all i ∈ N ,
Vi(Ai) ≥ MMS(i). In contrast to work on maximizing the
minimum value of any player (Bansal and Sviridenko 2006;
Asadpour and Saberi 2007; Roos and Rothe 2010), MMS is
a “Boolean” fairness notion. Also note that a proportional
allocation is always an MMS allocation, that is, proportion-
ality is a stronger fairness property than MMS.

It is tempting to think that in our setting (additive valua-
tions), an MMS allocation always exists. In fact, extensive
experiments by Bouveret and Lemaı̂tre (2014) did not yield
a single counterexample. Alas, it turns out that (intricate)
counterexamples do exist (Procaccia and Wang 2014). On
the positive side, approximate MMS allocations are known
to exist. Specifically, it is always possible to give each player
a bundle worth at least 2/3 of his MMS guarantee, that is,
there exists an allocation A1, . . . , An such that for all i ∈ N ,
Vi(Ai) ≥ 2

3MMS(i) (Procaccia and Wang 2014). Further-
more, very recent work by Amanatidis et al. (2015) achieves
the same approximation ratio in polynomial time.

These theoretical results have already made a significant
real-world impact through Spliddit (www.spliddit.org), a
not-for-profit fair division website (Goldman and Procaccia
2014). Since its launch in November 2014, Spliddit has at-
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tracted more than 55,000 users. The website currently offers
five applications, for dividing goods, rent, credit, chores, and
fare. Spliddit’s algorithm for dividing goods, in particular,
elicits additive valuations (which is easy to do), and maxi-
mizes social welfare (the total value players receive) subject
to the highest feasible level of fairness among envy-freeness,
proportionality, and MMS. If envy-freeness and proportion-
ality are infeasible, the algorithm computes the maximum α
such that all players can receive an α fraction of their MMS
guarantee; since α ≥ 2/3 (Procaccia and Wang 2014), the
solution is, in a sense, provably fair. The website summa-
rizes the method’s fairness guarantees as follows:

“We guarantee each participant at least two thirds of
her maximin share. In practice, it is extremely likely
that each participant will receive at least her full max-
imin share.”

Our goal in this paper is to better understand the second sen-
tence of this quote: When is it possible to find an (exact)
MMS allocation? And how “likely” is it?

Our results. Our first set of results has to do with the fol-
lowing question: what is the maximum f(n) such that ev-
ery instance with n players and m ≤ f(n) goods admits
an MMS allocation? The previously known counterexample
to the existence of MMS allocations uses a huge number of
goods — nn, to be exact (Procaccia and Wang 2014). Hence,
f(n) ≤ nn − 1. Our first major result drastically improves
this upper bound: an MMS allocation may not exist even
when the number of goods is linear in the number of play-
ers.

Theorem 2.1. For all n ≥ 3, there is an instance with n
players and m ≤ 3n+4 goods such that an MMS allocation
does not exist.

That is, f(n) ≤ 3n+ 3. On the other hand, Bouveret and
Lemaı̂tre (2014) show that f(n) ≥ n+3. As a bonus result,
we show in the full version of the paper1 that f(n) ≥ n+4.

The counterexamples to the existence of MMS allocations
are extremely delicate, in the sense that an MMS alloca-
tion does exist if the valuations are even slightly perturbed.
In addition, as mentioned above, randomly generated in-
stances did not contain any counterexamples (Bouveret and
Lemaı̂tre 2014). We formalize these observations by consid-
ering the regime where for each i ∈ N there is a distribution
Di such that the values Vi(g) are drawn independently from
Di.

Theorem 3.1 Assume that for all i ∈ N , V[Di] ≥ c for a
constant c > 0. Then for all ε > 0 there exists K = K(c, ε)
such that if max(n,m) ≥ K, then the probability that an
MMS allocation exists is at least 1− ε.

In words, an MMS allocation exists with high probability
as the number of players or the number of goods goes to in-
finity. It was previously known that an envy-free allocation
(and, hence, an MMS allocation) exists with high probability
when m ∈ Ω(n lnn) (Dickerson et al. 2014). Our analysis
therefore focuses on the case of m ∈ O(n lnn). In this case,

1Available from http://procaccia.info/research.

an envy-free allocation is unlikely to exist (such an alloca-
tion certainly does not exist when m < n), but (as we show)
the existence of an MMS allocation is still likely. Specifi-
cally, we develop an allocation algorithm and show that it
finds an MMS allocation with high probability. The algo-
rithm’s design and analysis leverage techniques for match-
ing in random bipartite graphs.

2 Dependence on the Number of Goods

The main result of this section is the following theorem:
Theorem 2.1. For all n ≥ 3, there is an instance with n
players and m ≤ 3n+4 goods such that an MMS allocation
does not exist.

Note that when n = 2, an MMS allocation is guaranteed
to exist: simply let player 1 divide the goods into two bun-
dles according to his MMS partition, and let player 2 choose.
Player 1 then obviously receives his MMS guarantee,
whereas player 2 receives a bundle worth at least V2(G)/2 ≥
MMS(2). The result of Procaccia and Wang (2014) shows
that an MMS allocation may not exist even when n = 3 and
m = 12 which proves the theorem for n = 3, but, as noted
in Section 1, their construction requires nn goods in general.

Because the new construction that proves Theorem 2.1 is
somewhat intricate, we relegate the detailed proof to the full
version of the paper. Here we explicitly provide the special
case of n = 4. To this end, let us define the following two
matrices, where ε is a very small positive constant (ε = 1/16
will suffice).

S =

⎡
⎢⎢⎣

7
8 0 0 1

8
0 3

4 0 1
4

0 0 1
2

1
2

1
8

1
4

1
2

1
8

⎤
⎥⎥⎦ ,

T =

⎡
⎢⎣

0 ε4 0 −ε4

ε3 0 −ε3 + ε2 −ε2

0 −ε4 + ε 0 ε4 − ε
−ε3 −ε ε3 − ε2 ε2 + ε

⎤
⎥⎦

Let M = S+T . Crucially, the rows and columns of M sum
to 1. Let G contain goods that correspond to the nonzero
elements of M , that is, for every entry Mi,j > 0 we have a
good gi,j ; note that |G| = 14 ≤ 3n+ 4.

Next, partition the 4 players into P = {1, 2} and Q =
{3, 4}. Define the valuations of the players in P as follows
where 0 < ε̃ � ε (ε̃ = 1/64 will suffice).

M +

⎡
⎢⎣
0 0 0 −ε̃
0 0 0 −ε̃
0 0 0 −ε̃
0 0 0 3ε̃

⎤
⎥⎦

That is, the values of the rightmost column are perturbed.
For example, for i ∈ P , Vi(g1,4) = 1/8− ε4 − ε̃. Similarly,
for players in Q, the values of the bottom row are perturbed:

M +

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
−ε̃ −ε̃ −ε̃ 3ε̃

⎤
⎥⎦
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It is easy to verify that the MMS guarantee of all players is
1. Moreover, the unique MMS partition of the players in P
(where every subset has value 1) corresponds to the columns
of M , and the unique MMS partition of the players in Q
corresponds to the rows of M . If we divide the goods by
columns, one of the two players in Q will end up with a
bundle of goods worth at most 1 − ε̃ — less than his MMS
value of 1. Similarly, if we divide the goods by rows, one of
the players in P will receive a bundle worth only 1− ε̃. Any
other partition of the goods will ensure that some party does
not achieve their MMS value due to the relative size of ε̃.

3 Random Valuations
The counterexamples to the existence of MMS allocations
— Theorem 2.1 and the construction of Procaccia and
Wang (2014) — are very sensitive: tiny random perturba-
tions are extremely likely to invalidate them. Our goal in
this section is to prove MMS allocations do, in fact, exist
with high probability, if a small amount of randomness is
present.

To this end, let us consider a probabilistic model with the
following features:

1. For all i ∈ N , Di denotes a probability distribution over
[0, 1].

2. For all i ∈ N, g ∈ G, Vi(g) is randomly sampled from
Di.

3. The set of random variables {Vi(g)}i∈N,g∈G is mutually
independent.
We will establish the following theorem:

Theorem 3.1. Assume that for all i ∈ N , V[Di] ≥ c for a
constant c > 0. Then for all ε > 0 there exists K = K(c, ε)
such that if max(n,m) ≥ K, then the probability that an
MMS allocation exists is at least 1− ε.

In words, as long as each Di has constant variance, if ei-
ther the number of players or the number of goods goes to
infinity, there exists an MMS allocation with high probabil-
ity. In parallel, independent work, Amanatidis et al. (2015)
establish (as one of several results) a special case of The-
orem 3.1 where each Di is the uniform distribution over
[0, 1]. Dealing with arbitrary distributions presents signifi-
cant technical challenges, and is also important in terms of
explaining the abovementioned experiments, which cover a
wide range of distributions. Yet the result of Amanatidis et
al. is not completely subsumed by Theorem 3.1, as they care-
fully analyze the rate of convergence to 1.

Our starting point is a result by Dickerson et al. (2014),
who study the existence of envy-free allocations. They show
that an envy-free allocation exists with high probability as
m → ∞, as long as n ∈ O(m/ lnm), and the distributions
Di satisfy the following conditions for all i, j ∈ N :

1. P [argmaxk∈N Vk(g) = {i}] = 1/n.
2. There exist constants μ, μ∗ such that

0 < E

[
Vi(g)

∣∣∣∣ argmax
k∈N

Vk(g) = {j}
]
≤ μ < μ∗

≤ E

[
Vi(g)

∣∣∣∣ argmax
k∈N

Vk(g) = {i}
]
.

The proof uses a naı̈ve allocation algorithm: simply give
each good to the player who values it most highly. The first
condition then implies that each player receives roughly 1/n
of the goods, and the second condition ensures that each
player has higher expected value for each of his own goods
compared to goods allocated to other players.

It turns out that, via only slight modifications, their theo-
rem can largely work in our setting. That is, alter their allo-
cation algorithm to give a good g to a player i who believes g
is in the top 1/n of their probability distribution Di. If there
are multiple such players, choose one uniformly at random
and if no such player exists, give it to any player uniformly
at random.

This procedure is fairly straightforward for continuous
probability distributions. For example, if player i’s distribu-
tion Di is uniform over the interval [0, 1] then he believes g
is in the top 1/n of Di if Vi(g) ≥ (n−1)/n. However, distri-
butions with atoms require more care. For example, suppose
Di is 1/3 with probability 7/8 and uniform over [1/2, 1]
with probability 1/8. Then if n = 3, i believes g is in the top
1/n of Di if Vi(g) > 1/3 or if Vi(g) = 1/3 he should be-
lieve it is in his top 1/n only 1/n− 1/8 = 5/24 of the time.
To implement such a procedure, when sampling from Di, we
should first sample from the uniform distribution over [0, 1].
If our sampled value is at least (n − 1)/n we will say i has
drawn from his top 1/n. We then convert our sampled value
to a sampled value from Di by applying the inverse CDF.

Utilizing the observation that any envy-free allocation is
also an MMS allocation we can then restate the result of
Dickerson et al. (2014) as the following lemma, whose proof
is relegated to the full version of the paper.

Lemma 3.2 ((Dickerson et al. 2014)). Assume that for all
i ∈ N , V[Di] ≥ c for a constant c > 0. Then for all ε >
0 there exists K = K(ε) such that if m ≥ K and m ≥
αn lnn, for some α = α(c), then the probability that an
MMS allocation exists is at least 1− ε.

Note that the statement of Lemma 3.2 is identical to that
of Theorem 3.1, except for two small changes: only m is
assumed to go to infinity, and the additional condition m ≥
αn lnn. So it only remains to deal with the case of m <
αn lnn. We can handle this scenario via consideration of
the case m < n8/7 — formalized in the following lemma.

Lemma 3.3. For all ε > 0 there exists K = K(ε) such that
if n ≥ K and m < n8/7, then the probability that an MMS
allocation exists is at least 1− ε.

Note that this lemma actually does not even require the
minimum variance assumption, that is, we are proving a
stronger statement than is needed for Theorem 3.1.

It is immediately apparent that when the number of goods
is relatively small, we will not be able to prove the existence
of MMS allocations via the existence of envy-free alloca-
tions. For example, envy-free allocations certainly do not
exist if m < n, and are provably highly unlikely to exist
if m = n + o(n) (Dickerson et al. 2014). Our approach,
to which we devote the remainder of this section, is signifi-
cantly more intricate.
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3.1 Proof of Lemma 3.3

We assume that m > n, because an MMS allocation always
exists when m ≤ n. We will require the following notions
and lemma.
Definition 3.4. A ranking of the goods G for some player
i ∈ N is the order of the goods by value from most valued to
least. Ties are broken uniformly at random. Furthermore, a
good g’s rank for a player i is the position of g in i’s ranking.

An important observation of the rankings that we will use
often throughout this section is that the players’ rankings are
independent of each other.
Definition 3.5. Suppose X ⊆ N and Y ⊆ G where |X| ≤
|Y |. Let

s = |X|	|Y |/|X|
 − |Y |,
and Γ be the bipartite graph where:
1. L represents the vertices on the left, and R on the right.
2. L is comprised of �|Y |/|X|� copies of the first s players

of X and 	|Y |/|X|
 copies of the other players.
3. R = Y .
4. The ith copy of a player has an edge to a good g iff g’s

rank is in ((i − 1)Δ, iΔ] in the player’s ranking where
Δ = ln3 n.

Note that |L| = |R| since if we let x = |X| and y = |Y |
(and therefore s = x	y/x
 − y). Then

|L| = s�y/x�+ (x− s)	y/x

= x	y/x
 − s (	y/x
 − �y/x�) .

If x divides y, then we have that 	y/x
 = �y/x� = y
x and

so |L| = y. If, on the other hand, x does not divide y, then
we have that 	y/x
 − �y/x� = 1 and so we have

|L| = x	y/x
 − s

= x	y/x
 − (x	y/x
 − y)

= y.

Therefore, in either case, |L| = y = |Y | = |R|.
The matched draft on X and Y is the process of construct-

ing Γ and producing an allocation corresponding to a perfect
matching of Γ. That is, if a perfect matching exists then a
player in X is given all goods the copies of it are matched
to. In the event that no perfect matching exists, the matched
draft is said to fail.
Lemma 3.6. Suppose of the m < n8/7 goods x = γ�m/n�
are randomly chosen and removed, where γ ≤ n1/3, and the
remaining m̃ := m − x goods are allocated via a matched
draft to ñ := n−γ players. Then this matched draft succeeds
with probability → 1 as n → ∞ (note that as n → ∞, so
too do ñ, m̃).

Proof. Define d as the minimum degree of a vertex of L in
Γ and D = 2 lg n lnn. Then we have

P [matched draft fails]
= P [matched draft fails | d < D]P [d < D]

+ P [matched draft fails | d ≥ D]P [d ≥ D]

≤ P [d < D] + P [matched draft fails | d ≥ D] .

Let us consider these two terms separately and show they
→ 0 as n → ∞.

If x = 0 we have that P [d < D] = 0 for sufficiently large
n, so let us assume x > 0. Denoting by pijD the probability
that player i has less than D of the goods ranked in positions
((j − 1)Δ, jΔ] remaining, we have

P [d < D] ≤
ñ∑

i=1

m̃/ñ∑
j=1

pijD.

The right hand side is equal to m̃ times the probability that
player 1 has less than D of the goods ranked in the top Δ
positions remaining, which is equal to m̃ times the probabil-
ity that of the x randomly chosen goods, more than Δ −D
are ranked in the top Δ positions for player 1.

Now let the random variable X denote the number of the
x random goods ranked in the top Δ for player 1. Clearly
E [X] = Δx

m̃ . Thus by Markov’s inequality we have that

P [X > Δ−D]

≤ E [X]

Δ−D

=

(
Δx

m̃

)
1

Δ−D

=

(
(ln3 n)(γ�m/n�)
m− γ�m/n�

)
1

ln3 n− 2 lg n lnn

≤
(
n10/21 ln3 n

n− n10/21

)
1

ln3 n− 2 lg n lnn

→ 0.

Next let us consider P [matched draft fails | d ≥ D]. We
would like to appeal to the plethora of results on perfect
matchings in bipartite Erdös-Rényi graphs (Bollobás 2001)
or random bipartite k-out graphs (McDiarmid 1980), but due
to the lack of independence on the edge existences we do not
satisfy a crucial assumption of much of this literature, and
more importantly its proofs. We will therefore prove this in
full here via an approach that allows us to ignore the depen-
dence. We will utilize Hall’s theorem and denote by N(X)
the set of neighbors of X in the bipartite graph Γ.

P [matched draft fails | d ≥ D]

= P [∃ X ⊆ L s.t. |X| < |N(X)| | d ≥ D]

≤
∑
X⊆L

P [|X| < |N(X)| | d ≥ D]

≤
m̃∑

i=D

∑
X⊆L
|X|=i

∑
Y⊆R

|Y |=i−1

P [N(X) ⊆ Y | d ≥ D] .

If the edges of Γ were independent then we would find that
for |X| = i and |Y | = i− 1,

P [N(X) ⊆ Y ] =

(
i− 1

m̃

)∑
x∈X |N(x)|

,
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and more importantly

P [N(X) ⊆ Y | d ≥ D] ≤
(
i− 1

m̃

)iD

. (1)

Via our independence assumptions in our randomized set-
ting there is only one form of dependence in the edges of
Γ. Specifically, if we take all copies of any player i ∈ L,
then their neighbors in R never intersect. Though this does
indeed introduce dependence into our system, note that we
still have that Equation (1) as the dependence only lowers
the probability of N(X) “fitting” into Y . We therefore find

P [matched draft fails | d ≥ D]

≤
m̃∑

i=D

∑
{X⊆L||X|=i}

∑
{Y⊆R||Y |=i−1}

(
i− 1

m̃

)iD

=

m̃∑
i=D

(
m̃

i

)(
m̃

i− 1

)(
i− 1

m̃

)iD

≤
�m̃/2�∑
i=D

(
m̃

i

)(
m̃

i− 1

)(
i− 1

m̃

)iD

+

m̃∑
i=�m̃/2�

(
m̃

m̃− i

)(
m̃

m̃− i+ 1

)(
i− 1

m̃

)iD

=

�m̃/2�∑
i=D

(
m̃

i

)(
m̃

i− 1

)(
i− 1

m̃

)iD

+

�m̃/2�∑
j=0

(
m̃

j

)(
m̃

j + 1

)(
m̃− j − 1

n

)(m̃−j)D

.

We now show both of these terms separately → 0 as n →
∞.

First,
�m̃/2�∑
i=D

(
m̃

i

)(
m̃

i− 1

)(
i− 1

m̃

)iD

≤
�m̃/2�∑
i=D

(
m̃e

i

)i (
m̃e

i− 1

)i−1 (
i− 1

m̃

)iD

≤
�m̃/2�∑
i=D

(
m̃e

i− 1

)2i−1 (
i− 1

m̃

)iD

=

�m̃/2�∑
i=D

(
i− 1

m̃

)i(D−2)+1

e2i−1

≤
�m̃/2�∑
i=D

e2i−1

2i(D−2)+1

≤
�m̃/2�∑
i=D

4e2

2D

≤ 2e2n8/7

n2 lnn

→ 0,

where the first inequality follows from the fact that
(
a
b

) ≤(
ae
b

)b
for b > 0, and the third inequality follows from the

fact that i ≤ �m̃/2�.
Second,
�m̃/2�∑
j=0

(
m̃

j

)(
m̃

j + 1

)(
m̃− j − 1

m̃

)(m̃−j)D

≤ m̃

(
m̃− 1

m̃

)m̃D

+

�m̃/2�∑
j=1

(
m̃e

j

)j (
m̃e

j + 1

)j+1 (
m̃− j − 1

m̃

)(m̃−j)D

≤ m̃

(
1− 1

m̃

)m̃D

+

�m̃/2�∑
j=1

(
m̃e

j

)2j+1 (
1− j + 1

m̃

)(m̃−j)D

≤ m̃e−D +

�m̃/2�∑
j=1

(
m̃e

j

)2j+1

e−D(j+1)(m̃−j)/m̃

≤ m̃e−D +

�m̃/2�∑
j=1

(
m̃e

j

)2j+1

e−D(j+1)/2

≤ m̃e−D +

�m̃/2�∑
j=1

(
m̃2e2

j2eD/2

)j+1

≤ n8/7

n2 lgn
+

�n8/7/2�∑
j=1

(
(n8/7)2e2

j2nlgn

)j+1

≤ n8/7

n2 lgn
+ �n8/7/2�

(
(n8/7)2e2

nlgn

)

→ 0,

where the first inequality follows from
(
a
b

) ≤ (
ae
b

)b
for b >

0 and the third inequality follows from 1 + x ≤ ex for all x.
Thus, we find that as n → ∞ the matched draft succeeds

with probability → 1. �
We are now ready to prove the lemma.

Proof of Lemma 3.3. Recall that we may assume that m >
n. We will ensure every player has at most one less good
than any other player. Let s then represent the number of
players that receive one less good than any other player, that
is,

s = n	m/n
 −m.

We consider two separate cases here.

Case 1: s ≤ n1/3. In this scenario we do the following.

1. If possible, give each of the first s players their top �m/n�
goods. Otherwise, fail to produce any allocation.

2. Hold a matched draft for the remaining (n − s)	m/n

goods and n− s players.
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We first show that as n → ∞ this procedure successfully
produces an allocation with probability → 1.

Consider the probability that the first step of the procedure
successfully completes. That is, the first s players each get
their top �m/n� goods. Similarly to a birthday paradox like
argument we get that this occurs with probability at least

s�m/n�∏
i=1

(
1− i− 1

m

)
>

(
1− sm/n

m

)sm/n

≥
(
1− 1

n2/3

)n10/21

.

But as

lim
x→∞

(
1− 1

ω(x)

)x

= 1

we find that this too goes to 1 as n → ∞.
Now consider the second step of the procedure. By

Lemma 3.6 with γ = s, we know that this succeeds with
probability 1 as n → ∞. Therefore the entire procedure will
successfully complete with probability → 1 as n → ∞.

Therefore, to prove the theorem, it suffices to show that
if the procedure successfully completes, then we have an
MMS allocation. Since for every player any MMS partition
must include a subset with at most �m/n� goods and the
first s players are given their top �m/n� goods, they must
receive their MMS value.

Let us turn our attention then to the remaining n− s play-
ers. Upon successful completion of the matched draft, we
know that all of these players will receive goods ranked
in their top Δ	m/n
. We claim that for sufficiently large
n any player’s MMS partition must include a subset of at
most 	m/n
 goods where each good is ranked lower than
Δ	m/n
. Suppose this were not true for purposes of contra-
diction. Then each of the n subsets in an offending player’s
MMS partition must include either one of the top Δ	m/n

goods or 	m/n
+1 goods. We then see that for sufficiently
large n, the number of such subsets is bounded by

Δ	m/n
+ m−Δ	m/n

	m/n
+ 1

= Δ	m/n

+

s(	m/n
 − 1) + (n− s)	m/n
 −Δ	m/n

	m/n
+ 1

=
Δ	m/n
2 + n	m/n
 − s

	m/n
+ 1

≤ 	m/n

	m/n
+ 1

n+Δ	m/n


≤ n1/7

n1/7 + 1
n+ n1/7 ln3 n

< n.

Thus the offending player cannot produce such an MMS par-
tition which proves the claim.

Now note that the n−s players of interest have MMS par-
titions that include the same number of goods they received,
but all of which are worth strictly less than every good in

their bundle. They therefore must have achieved their MMS
value.

Case 2: s > n1/3. In this scenario we simply run a matched
draft. Similarly to the previous case we know from Lemma
3.6 with γ = 0 that all the players will receive goods ranked
in their top Δ	m/n
 with probability → 1 as n → ∞.

In this case for sufficiently large n any player’s MMS par-
tition must include a subset of at most �m/n� goods where
each good is ranked lower than Δ	m/n
. Again, suppose
this were not true for purposes of contradiction. Then each
of the n subsets in a player’s MMS partition must include ei-
ther one of the top Δ	m/n
 goods or �m/n�+ 1 = 	m/n

goods (in this case m �≡ 0 (mod n)). We then see that for
sufficiently large n, the number of subsets is at most

Δ	m/n
+ m−Δ	m/n

	m/n


= Δ�m/n�+ s(	m/n
 − 1) + (n− s)	m/n

	m/n


= n+Δ�m/n� − s

	m/n


≤ n+ n1/7 ln3 n− n1/3

n1/7

< n.

Via logic similar to the previous case, we conclude that all
players must have achieved their MMS value. �

4 Discussion

Theorem 3.1, together with the extensive experiments of
Bouveret and Lemaı̂tre (2014), tells us that an MMS allo-
cation is very likely to exist ex post, that is, after the players
report their preferences. But, unfortunately, Theorem 2.1 im-
plies that an MMS allocation cannot be guaranteed even if
the number of goods is quite small.

While Theorem 2.1 essentially settles one of the main
open problems of Procaccia and Wang (2014), it sheds no
light on the other: For each number of players n, what is the
maximum g(n) ∈ (0, 1) such that it is always possible to
achieve a g(n)-approximate MMS allocation, that is, an al-
location satisfying Vi(Ai) ≥ g(n) · MMS(i) for all players
i. Procaccia and Wang prove that

g(n) ≥ 2�n�odd

3�n�odd − 1
,

where �n�odd is the largest odd n′ such that n′ ≤ n. In par-
ticular, for all n we have that g(n) > 2/3, and g(3) ≥ 3/4.
Amanatidis et al. (2015) establish (among their other results)
an improved bound of g(3) ≥ 7/8, but do not improve the
general lower bound. On the other hand, counterexamples
to the existence of MMS allocations — the construction of
Procaccia and Wang (2014), and the proof of Theorem 2.1
— only imply that g(n) ≤ 1 − o(1), that is, they give an
upper bound that is extremely close to 1. The challenge of
closing this gap is, in our view, both technically fascinating
and practically significant.
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