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Abstract

We study the problem of aligning the values of an AI system with those of multiple
agents, represented by different reward functions in a Markov decision process.
Motivated by Rawls’ linguistic analogy, we assume that these reward functions are
random perturbations of an underlying reward function, which embodies common
moral principles. Under this assumption, we show that inverse reinforcement
learning algorithms that satisfy a certain property — that of matching feature
expectations — recover policies that are approximately optimal with respect to
the underlying reward function, and that no algorithm can do better in the worst
case. We support this conclusion with experiments involving a classic inverse
reinforcement learning algorithm that matches feature expectations.

1 Introduction

A Markov decision process (MDP) is a formal specification of a sequential decision making environ-
ment, which consists of a set of states, a set of actions, a reward function, and a stochastic transition
function. Reinforcement learning (RL) deals with learning a policy in an MDP — which specifies a
possibly randomized action that is taken in each state — to maximize cumulative reward.

RL has long history in AI [24, 11], as well as in many other disciplines. But in recent years interest
in the area has exploded, in part due to breakthroughs in game playing [15, 23] and fast-growing
applications to robotics [12]. It is safe to say that, nowadays, RL is widely considered to be one of
the basic building blocks in the construction of intelligent agents.

While most work in the area focuses on maximizing an exogenous reward function, recently re-
searchers have been thinking about the problem of training an AI system to act in a way that is ethical,
beneficial, or safe [22]. One of the prominent approaches is to align the values of the system with
the values of a human through inverse reinforcement learning (IRL) [16, 1]. Specifically, the idea is
to observe a human agent executing a policy in an MDP, where everything is known to the learner
except the reward function, and extract a reward function that is most likely to be the one being
optimized by the agent (and presumably takes ethical constraints into account). Using this reward
function — and knowledge of the other components of the MDP — the agent can easily compute an
optimal policy to follow.

Our point of departure is that we are interested in multi-agent value alignment rather than alignment
with a single agent. Specifically we observe n different agents executing policies that are optimal for
their individual reward functions, corresponding to different values. Our approach is to aggregate
these observations into a single policy, by applying an inverse reinforcement learning algorithm to
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the set of all observations. Ideally, the resulting policy would represent moral principles better than
any individual policy does.

Naturally, if individuals have wildly divergent values then the aggregate policy may not reflect
coherent moral guidelines. For this reason, we assume that individual reward functions are nothing
but noisy versions of an underlying reward function, which embodies a common set of moral
propositions. This approach is couched in the linguistic analogy, originally introduced by Rawls [19].
It draws on the work of Chomsky [5], who argued that competent speakers have a set of grammatical
principles in mind, but their linguistic behavior is hampered by “grammatically irrelevant conditions
such as memory limitations, distractions, shifts of attention and interest, and errors.” Analogously,
Rawls claimed, humans have moral rules — a common ‘moral grammar’ — in our minds, but, due to
various limitations, our moral behavior is only an approximation thereof. Interestingly, this theory
lends itself to empirical experimentation, and, indeed, it has been validated through the work of
Mikhail [14] in moral psychology.

In summary, our research challenge is this: Given observations from policies that are optimal with
respect to different reward functions, each of which is a perturbation of an underlying reward function,
identify IRL algorithms that can recover a good policy with respect to the underlying reward function.
It is important to note that, while we are personally motivated by multiagent value alignment and
ethical decision making, this technical challenge is both natural and general. Therefore, our work
could be equally relevant to other applications.

1.1 Our Model and Results

We start from a common IRL setup: each reward function is associated with a weight vector w, such
that the reward for taking a given action in a given state is the dot product of the weight vector and
the feature vector of that state-action pair. The twist is that there is an underlying reward function
represented by a weight vector w?, and each of the agents is associated with a weight vector wi,
which induces an optimal policy πi. We observe a trajectory from each πi.

In Section 3, we focus on competing with a uniform mixture over the optimal policies of the agents,
π1, . . . , πn (for reasons that we explicate momentarily). We can do this because the observed trajec-
tories are “similar” to the uniform mixture, in the sense that their feature vectors — the discounted
frequencies of the features associated with the observed state-action pairs — are close to that of the
uniform mixture policy. Therefore, due to the linearity of the reward function, any policy whose
feature expectations approximately match those of the observed trajectories must be close to the uni-
form mixture with respect to w?. We formalize this idea in Theorem 3.2, which gives a lower bound
on the number of agents and length of observed trajectories such that any policy that ε/4-matches
feature expectations is ε-close to the uniform mixture. Furthermore, we identify two well-known
IRL algorithms, Apprenticeship Learning [1] and Max Entropy [29], which indeed output policies
that match the feature expectations of the observed trajectories, and therefore enjoy the guarantees
provided by this theorem.

Needless to say, competing with the uniform mixture is only useful insofar as this benchmark exhibits
“good” performance. We show that this is indeed the case in Section 4, assuming (as stated earlier)
that each weight vector wi is a noisy perturbation of w?. Specifically, we first establish that, under
relatively weak assumptions on the noise, it is possible to bound the difference between the reward of
the uniform mixture and that of the optimal policy (Theorem 4.2). More surprisingly, Theorem 4.4
asserts that in the worst case it is impossible to outperform the uniform mixture, by constructing an
MDP where the optimal policy cannot be identified — even if we had an infinite number of agents
and infinitely long trajectories!

Finally, in Section 5, we run the Apprenticeship Learning algorithm (which matches feature expec-
tations) on trajectories from noisy agents in two different domains, and empirically examine the
relation between the level of noise and the reward of the IRL policy.

Putting all of these results together, we conclude that directly running an IRL algorithm that matches
feature expectations on the observed trajectories is a sensible approach to multiagent value alignment.

1.2 Related Work

The most closely related work deals with IRL when the observations come from an agent who acts
according to multiple intentions, each associated with a different reward function [2, 4]. The main
challenge stems from the need to cluster the observations — the observations in each cluster are
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treated as originating from the same policy (or intention). By contrast, clustering is a nonissue in our
framework, and our focus on value alignment with society justifies the assumption that the reward
functions are correlated, which, in turn, allows us to provide theoretical guarantees.

Further afield, there is a body of work on robust RL and IRL under reward uncertainty [9, 20, 21],
noisy rewards [27], and corrupted rewards [6]. Of these papers the closest to ours is that of Zheng
et al. [27], who design robust IRL algorithms under sparse noise, in the sense that only a small
fraction of the observations are anomalous; they do not provide theoretical guarantees. Our setting is
quite different, as very few observations would typically be associated with a near-perfect policy.

From the viewpoint of computational social choice [3], our work is related to recent papers on
learning and aggregating models of preferences in order to automate ethical decisions [17, 8]. Like
Freedman et al. [8], aggregation does not take place explicitly; rather, in our case the IRL algorithm
implicitly aggregates individual policies into a single policy.

2 MDP Terminology

We assume the environment is modeled as an MDP {S,A, T, γ,D} with an unknown reward function.
S is a finite set of states; A is a finite set of actions; T (s, a, s′) is the state transition probability of
reaching state s′ from state s when action a is taken; γ ∈ [0, 1) is the discount factor; and D the
initial-state distribution, from which the start state s0 is drawn for every trajectory.

As is standard in the literature [1], we assume that there is a function φ : S × A → Rd that maps
state-action pairs to their real-valued features. We also overload notation, and say that the feature
vector of a trajectory τ = {(s0, a0), (s1, a1), . . . , (sL, aL)} is defined as φ(τ) =

∑L
t=0 γ

tφ(st, at).

We make the standard assumption that the immediate reward of executing action a from state s is
linear in the features of the state-action pair, i.e. rw(s, a) = wᵀφ(s, a). In our setting, this has
a natural interpretation: φ represents the different ethical factors, and w weighs them in varying
degrees.

Let µ denote the feature expectation of policy π, that is, µ(π) = E[
∑∞
t=0 γ

tφ(st, at)|π], where π
defines the action at taken from state st, and the expectation is taken over the transition probabilities
T (st, at, st+1). Hence, the cumulative reward of a policy π under weight w can be rewritten as:

Rw(π) = Es0∼D[V π(s0)] = E

[ ∞∑
t=0

γtrw(st, at)

∣∣∣∣π
]

= wᵀ · E

[ ∞∑
t=0

γtφ(st, a)

∣∣∣∣π
]

= wᵀµ(π)

Let Pπ(s, t) denote the probability of getting to state s at time t under policy π. Then, the cumulative
reward Rw is Rw(π) =

∑∞
t=0 γ

t
∑
s∈S Pπ(s, t)rw(s, π(s)).

3 Approximating the Uniform Mixture

We consider an environment with n agents N = {1, . . . , n}. Furthermore, the reward function of
each agent i ∈ N is associated with a weight vector wi, and, therefore, with a reward function rwi .
This determines the optimal policy πi executed by agent i, from which we observe the trajectory
τi, which consists of L steps. We observe such a trajectory for each i ∈ N , giving us trajectories
{τ1, ..., τn}.
As we discussed in Section 1, we assume that the reward function associated with each agent is a noisy
version of an underlying reward function. Specifically, we assume that there exists a ground truth
weight vector w?, and for each agent i ∈ N we let wi = w? + ηi, where ηi is the corresponding
noise vector; we assume throughout that η1, . . . ,ηn are i.i.d. Following Abbeel and Ng [1], we also
assume in some of our results (when stated explicitly) that ‖w?‖2 ≤ 1 and ‖φ(s, a)‖∞ ≤ 1.

Let us denote by πu the uniform mixture over the policies π1, . . . , πn, that is, the (randomized) policy
that, in each trajectory, selects one of these policies uniformly at random and executes it throughout
the trajectory.

Our goal in this section is to “approximate” the uniform mixture (and we will justify this choice
in subsequent sections). To do so, we focus on IRL algorithms that “match feature expectations.”
Informally, the property of interest is that the feature expectations of the policy match the (discounted)
feature vectors of observed trajectories. This idea is already present in the IRL literature, but it is
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helpful to define it formally, as it allows us to identify specific IRL algorithms that work well in our
setting.
Definition 3.1. Given n trajectories τ1, ..., τn, a (possibly randomized) policy π ε-matches their
feature expectations if and only if ‖µ(π)− 1

n

∑n
i=1 φ(τi)‖2 ≤ ε.

In a nutshell, due to the linearity of the reward function, two policies that have the same feature
expectations have the same reward. Therefore, if the observed trajectories closely mimic the feature
expectations of πu, and a policy π̃ matches the feature expectations of the observed trajectories, then
the reward of π̃ would be almost identical to that of πu. This is formalized in the following theorem,
whose proof is given in Appendix B.
Theorem 3.2. Assume that ‖φ(s, a)‖∞ ≤ 1 for all s ∈ S, a ∈ A. Let w? such that ‖w?‖2 ≤ 1, fix
any w1, . . . ,wn, and, for all i ∈ N , let τi be a trajectory of length L sampled by executing πi. Let π̃
be a policy that ε/3−matches the feature expectation of these trajectories. If

n ≥
72 ln

(
2
δ

)
d

ε2(1− γ)2
and L ≥ log1/γ

3
√
d

(1− γ)ε

then, with probability at least 1− δ,
∣∣Rw?(π̃)−Rw?(πu)

∣∣ ≤ ε.
Note that the required number of agents n may be significant; fortunately, we can expect access to
data from many agents in applications of interest. For example, Noothigattu et al. [17] built a system
that decides ethical dilemmas based on data collected from 1.3 million people.

To apply Theorem 3.2, we need to use IRL algorithms that match feature expectations. We have
identified two algorithms that satisfy this property: the Apprenticeship Learning algorithm of Abbeel
and Ng [1], and the Max Entropy algorithm of Ziebart et al. [29]. For completeness we present these
algorithms, and formally state their feature-matching guarantees, in Appendix A.

4 How Good is the Uniform Mixture?

In Section 3 we showed that it is possible to (essentially) match the performance of the uniform mix-
ture with respect to the ground truth reward function. In this section we justify the idea of competing
with the uniform mixture in two ways: first, we show that the uniform mixture approximates the
optimal policy under certain assumptions on the noise, and, second, we prove that in the worst case it
is actually impossible to outperform the uniform mixture.

4.1 The Uniform Mixture Approximates the Optimal Policy

Recall that for all i ∈ n, wi = w? + ηi. It is clear that without imposing some structure on the noise
vectors ηi, no algorithm would be able to recover a policy that does well with respect to w?.

Let us assume, then, that the noise vectors ηi are such that the ηik are independent and each η2ik is
sub-exponential. Formally, a random variable X with mean u = E[X] is sub-exponential if there are
non-negative parameters (ν, b) such that E [exp (λ(X − u))] ≤ exp (ν2λ2/2) for all |λ| < 1/b. This
flexible definition simply means that the moment generating function of the random variable X is
bounded by that of a Gaussian in a neighborhood of 0. Note that if a random variable is sub-Gaussian,
then its square is sub-exponential. Hence, our assumption is strictly weaker than assuming that each
ηik is sub-Gaussian. For our purposes, the key property of sub-exponential random variables is
captured by the following well known tail inequality; its proof can be found, for example, in Chapter
2 of [25].
Lemma 4.1. Let X1, . . . , Xm be independent sub-exponential random variables with parameters
(ν, b). Then

Pr

 1

m

m∑
j=1

(Xj − uj) ≥ t

 ≤ {exp
(
−mt

2

2ν2

)
for 0 ≤ t ≤ ν2

b

exp
(
−mt2b

)
for t > ν2

b

,

where uj = E[Xj ].

Despite our assumption about the noise, it is a priori unclear that the uniform mixture would do
well. The challenge is that the noise operates on the coordinates of the individual weight vectors,
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which in turn determine individual rewards, but, at first glance, it seems plausible that relatively small
perturbations of rewards would lead to severely suboptimal policies. Our result shows that this is not
the case: πu is approximately optimal with respect to Rw? , in expectation.
Theorem 4.2. Assume that ‖φ(s, a)‖∞ ≤ 1 for all s ∈ S, a ∈ A. Let w? such that ‖w?‖2 ≤ 1, and
suppose that w1, ...,wn are drawn from i.i.d. noise around w?, i.e., wi = w? + ηi, where each of
its coordinates is such that η2ik is an independent sub-exponential random variable with parameters
(ν, b). Then

E[Rw?(πu)] ≥ Rw?(π?)−O

(
d
√
u+ ν

√
d

u
+

b√
u

)
,

where u = 1
d

∑d
k=1 E

[
η2ik
]
, and the expectation is taken over the noise.

The exact expression defining the gap between E[Rw?(πu)] and Rw?(π?) can be found in the proof
of Theorem 4.2, which appears in Appendix C; we give the asymptotic expression in the theorem’s
statement because it is easier to interpret. As one might expect, this gap increases as ν or b is
increased (and, in a linear fashion). This is intuitive because a smaller ν or b imposes a strictly
stronger assumption on the sub-exponential random variable (and its tails).

To gain more insight, we analyze the upper bound on the gap when ηik follows a Gaussian distribution,
that is, ηik ∼ N (0, σ2). Note that this implies that η2ik follows a χ2

1 distribution scaled by σ2; a χ2
1

distributed random variable is known to be sub-exponential with parameters (2, 4), and hence this
implies that η2ik is sub-exponential with parameters (2σ2, 4σ2). Further, in this case, u = E

[
η2ik
]

=

σ2. Plugging these quantities into the upper bound of Theorem 4.2 shows that the gap is bounded by
O(dσ).

Theorem 4.2 shows that the the gap depends linearly on the number of features d. We informally
establish through an example that this upper bound is tight. Assume ηik ∼ N (0, σ2) with σ ≤ 2/d
(to avoid violating the constraint ‖φ(s, a)‖∞ ≤ 1). Suppose the MDP has just one state and 2d−1 + 1
actions. One action has feature vector (dσ/2, 0, . . . , 0), and for each subset S ⊆ {2, . . . , d}, there is
an action aS with a binary feature vector such that it is 1 for coordinates in S and 0 everywhere else.
Let w? = (1, 0, ..., 0). The optimal policy is to pick the first action which has cumulative reward of
dσ

2(1−γ) . As ηik ∼ N (0, σ2) for each k, with constant probability, roughly d/2 of the coordinates of
the noised vector reward wi will deviate by roughly +σ and the first coordinate will not increase
too much. In this case, the action corresponding to the coordinates with positive deviations will
have reward on the order of dσ/2, beating action 1 to become optimal. Hence, this would lead to
πi picking this action and having 0 reward under w?. As this occurs with constant probability for a
policy in the data, and πu is simply a mean of their rewards, its expected value would deviate from
the optimum by at least a constant fraction of dσ/2.

4.2 It is Impossible to Outperform the Uniform Mixture in the Worst Case

An ostensible weakness of Theorem 4.2 is that even as the number of agents n goes to infinity, the
reward of the uniform mixture may not approach that of the optimal policy, that is, there is a persistent
gap. The example given in Section 4.1 shows the gap is not just an artifact of our analysis. This is
expected, because the data contains some agents with suboptimal policies πi, and a uniform mixture
over these suboptimal policies must itself be suboptimal.

It is natural to ask, therefore, whether it is generally possible to achieve performance arbitrarily close
to π? (at least in the limit that n goes to infinity). The answer is negative. In fact, we show that — in
the spirit of minimax optimality [10, 18] — one cannot hope to perform better than πu itself in the
worst case. Intuitively, there exist scenarios where it is impossible to tell good and bad policies apart
by looking at the data, which means that the algorithm’s performance depends on what can be gleaned
from the “average data”.

This follows from a surprising1 result that we think of as “non-identifiability” of the optimal policy.
To describe this property, we introduce some more notation. The distribution over the weight vector
of each agent i, wi = w? + ηi, in turn induces a distribution over the optimal policy πi executed
by each agent. Denote this distribution by P(w?).2 Hence, each agent’s optimal policy πi is just

1At least it was surprising for us — we spent significant effort trying to prove the opposite result!
2Note that this distribution does not depend on i itself since the noise ηi is i.i.d. across the different agents.
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a sample from this distribution P(w?). In particular, as the number of agents goes to infinity, the
empirical distribution of their optimal policies would exactly converge to P(w?).

For the rest of this section, we make minimal assumptions on the noise vector ηi. In particular, we
merely assume that ηi follows a continuous distribution and that each of its coordinates is i.i.d. We
are now ready to state our non-identifiability lemma.
Lemma 4.3 (non-identifiability). For every continuous distribution D over R, if ηik is independently
sampled from D for all i ∈ N and k ∈ [d], then there exists an MDP and weight vectors w?

a, w?
b with

optimal policies π?a, π?b , respectively, such that π?a 6= π?b but P(w?
a) = P(w?

b ).

Even if we had an infinite number of trajectories in our data, and even if we knew the exact
optimal policy played by each player i, this information would amount to knowing P(w?). Hence,
if there exist two weight vectors w?

a, w?
b with optimal policies π?a, π?b such that π?a 6= π?b and

P(w?
a) = P(w?

b ), then we would not be able to identify whether the optimal policy is π?a or π?b
regardless of how much data we had.

The proof of Lemma 4.3 is relegated to Appendix D. Here we provide a proof sketch.

Proof sketch of Lemma 4.3. The intuition for the lemma comes from the construction of an MDP
with three possible policies, all of which have probability 1/3 under P(w?), even though one is
better than the others. This MDP has a single state s, and three actions {a, b, c} that lead back
to s. Denote the corresponding policies by πa, πb, πc. Let the feature expectations be φ(s, a) =
[0.5, 0.5], φ(s, b) = [1,−δ/2], φ(s, c) = [−δ/2, 1], where δ > 0 is a parameter. Let the ground truth
weight vector be w? = (vo, vo), where vo is such that the noised weight vector w = w? + η has
probability strictly more than 1/3 of lying in the first quadrant; such a value always exists for any
noise distribution that is continuous and i.i.d. across coordinates.

Let us look at weight vectors w for which each of the three policies πa, πb and πc are optimal. πa
is the optimal policy when wᵀµa > wᵀµb and wᵀµa > wᵀµc, which is the intersection of the
half-spaces wᵀ(−1, 1 + δ) > 0 and wᵀ(1 + δ,−1) > 0. Similarly, we can reason about the regions
where πb and πc are optimal. These regions are illustrated in Figure 1 for different values of δ.
Informally, as δ is decreased, the lines separating (πa, πc) and (πa, πb) move closer to each other (as
shown for δ = 0.25), while as δ is increased, these lines move away from each other (as shown for
δ = 10). By continuity and symmetry, there exists δ such that the probability of each of the regions
(with respect to the random noise) is exactly 1/3, showing that the MDP has the desired property.
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Figure 1: Regions of each optimal policy for different values of δ. Blue depicts the region where πa
is optimal, orange is where πb is optimal, and green is where πc is optimal.

To complete the proof of the lemma, we create a similar MDP with four features instead of three.
We show that the two weight vectors w?

a = (vo, vo, 0, 0) and w?
b = (0, 0, vo, vo) lead to P(w?

a) =
( 1
3 ,

1
3 ,

1
3 ) = P(w?

b ), even though their corresponding optimal policies are πa and πb, respectively.

For the next theorem, therefore, we can afford to be “generous:” we will give the algorithm (which is
trying to compete with πu) access to P(w?), instead of restricting it to sampled trajectories. Formally,
the theorem holds for any algorithm that takes a distribution over policies as input, and returns a
randomized policy.
Theorem 4.4. For every continuous distribution D over R, if ηik is independently sampled from
D for all i ∈ N and k ∈ [d], then there exists an MDP such that for any algorithm A from
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distributions over policies to randomized policies, there exists a ground truth weight vector w? such
that Rw?(A(P(w?)) ≤ Rw?(πu) < Rw?(π?).

In words, the constructed instance is such that, even given infinite data, no algorithm can outperform
the uniform mixture, and, moreover, the reward of the uniform mixture is bounded away from the
optimum. The theorem’s proof is give in Appendix E.

5 Empirical Results

As we have seen in Section 4.1, the gap between Rw?(π?) and Rw?(πu) is upper bounded by
O(d
√
u+ ν

√
d/u+ b/

√
u) when η2ik is sub-exponential, or O(dσ) when ηik is Gaussian. Further,

Section 3 shows that a policy π̃ that matches feature expectations of the observed trajectories is very
close to πu in terms of cumulative reward Rw? . In this section, we empirically examine the gaps
between π̃ (obtained by a “feature matching” IRL algorithm), πu and π?.

5.1 Methodology

As our IRL algorithm we use Apprenticeship Learning, which guarantees the feature-matching
property (see Section 3 and Appendix A). By Theorem 3.2 we may safely assume that any IRL
algorithm that matches feature expectations would have essentially identical rewards, and therefore
would show very similar behavior in our experiments.

We perform our experiments in the following two domains.

Grab a Milk. We adapt the “Grab a Milk” MDP, a route planning RL domain [26] involving ethical
considerations, to our setting. The MDP is defined by a 10 by 10 grid room, where the agent starts
at (0, 0) and has to reach a bottle of milk positioned at (9, 9). There are also 16 babies in the room,
5 of which are crying for attention. When the agent crosses a crying baby, they can help soothe
the baby, but on crossing a non-crying baby, the agent disturbs the baby. Hence, the goal of this
task is to minimize the number of steps to the milk, while at the same time soothing as many crying
babies as possible along the way and avoiding crossing non-crying babies. This MDP is adapted
to our setting, by defining each state (or grid square) to have three features φ(s).3 The first feature
captures the reward of taking a step, and is set to −1 if the state is non-terminal, whereas it is set to
5 for the terminal state (9, 9). The second is a boolean feature depicting whether there is a crying
baby in the particular grid square, and similarly the third is a boolean feature depicting whether
there is a non-crying baby in the particular grid square. The rewards in the MDP are then defined
as rw

?

(s) = (w?)ᵀφ(s) where the ground truth weight vector is given by w? = [1, 0.5,−0.5].
Intuitively, this weight vector w? can be interpreted as the weights for different ethical factors, and
each member of society has a noised version of this weight.

Sailing. The other domain we use is a modified version of the “Sailing” MDP [13]. The Sailing MDP
is also a gridworld domain (we use the same size of 10 by 10), where there is a sailboat starting at
(0, 0) and navigating the grid under fluctuating wind conditions. The goal of the MDP is to reach
a specified grid square as quickly as possible. We adapt this domain to our setting by removing
the terminal state, and instead adding features for each grid square.4 Now, the goal of the agent is
not to reach a certain point as quickly as possible, but to navigate this grid while maximizing (or
minimizing) the weighted sum of these features. We use 10 features for each grid square, and these
are independently sampled from a uniform distribution over (−1, 1). The ground truth weight vector
w?, which defines the weights of these features for the net reward, is also randomly sampled from
independent Unif(−1, 1) for each coordinate. As before, this weight vector w? can be interpreted as
the weights for different bounties, and each member has a noised version of this weight.

Being gridworld domains, in both the MDPs, the agent has four actions to choose from at each state
(one for each direction). The transition dynamics are as follows: On taking a particular action from a
given state, the agent moves in that direction with probability 0.95, but with a probability of 0.05 it
moves in a different direction uniformly at random. We use a discount factor of 0.95 in both domains.

3For these MDPs, the rewards depend only on the states and not state-action pairs, and hence the reward
function can be defined as rw(s, a) = rw(s) = wᵀφ(s).

4Intuitively, these features could represent aspects like “abundance of fish” in that grid square for fishing,
“amount of trash” in that square that could be cleaned up, “possible treasure” for treasure hunting, etc.
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Figure 2: Performance on the Sailing MDP. Er-
ror bars show 95% confidence intervals.
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Figure 3: Performance on the Grab a Milk MDP.
Error bars show 95% confidence intervals.

We generate the trajectories {τ1, . . . , τn} as described in Section 3, and use a Gaussian distribution
for the noise. That is, ηi ∼ N (0, σ2Id). We generate a total of n = 50 trajectories, each of length
L = 30. IRL is then performed on this data and we analyze its reward as σ is varied. A learning rate
of 0.001 is used for the Apprenticeship Learning algorithm.

5.2 Results

Figures 2 and 3 show the performance of πu and the IRL algorithm as σ is varied. We also include
the performance of π? and a purely random policy πr (which picks a uniformly random action at
each step), as references. Each point in these graphs is averaged over 50 runs (of data generation).

For both domains, the first thing to note is that the uniform mixture πu and the IRL algorithm have
nearly identical rewards, which is why the green IRL curve is almost invisible. This confirms that
matching feature expectations leads to performance approximating the uniform mixture.

Next, as expected, one can observe that as σ increases, the gap between R?(π?) and R?(πu) also
increases. Further, for both domains, this gap saturates around σ = 10 and the R?(πu) curve flattens
from there (hence, we do not include larger values of σ in either graph). Note that, in both domains,
the ground truth weight vector w? is generated such that ‖w?‖∞ ≤ 1. Hence, a standard deviation
of 10 in the noise overshadows the true weight vector w?, leading to the large gap shown in both
graphs. Looking at more reasonable levels of noise (with respect to the norm of the weights), like
σ ∈ [0, 1], we can see that R?(πu) drops approximately linearly, as suggested by Theorem 4.2. In
particular, it is 14.27 at σ = 0.5 and 9.84 at σ = 1.0 for Sailing, and it is 3.93 at σ = 0.5 and 0.39 at
σ = 1.0 for Grab a Milk.

Finally, we compare the performance of πu with that of the purely random policy πr. As σ becomes
very large, each wi is distributed almost identically across the coordinates. Nevertheless, because
of the structure of the Grab a Milk MDP, R?(πu) still does significantly better than R?(πr). By
contrast, Sailing has features that are sampled i.i.d. from Unif(−1, 1) for each state, which leads the
two policies, πu and πr, to perform similarly for large values of σ.

6 Discussion

We have shown that the uniform mixture πu over the policies of individual agents provides strong
performance guarantees. However, one can plausibly argue that πu is not “better” than the individual
policies ex post, only in expectation. By contrast, IRL algorithms pool the feature expectations of
the trajectories τ1, . . . , τn together, and try to recover a policy that approximately matches them.
Therefore, we believe that IRL algorithms do a much better job of aggregating the individual policies
than πu does, while giving almost the same optimality guarantees.

Apropos aggregation, one could make it more explicit. Specifically, suppose that we have learned
(via IRL) a reward function and an optimal policy for each agent, which reflect the agent’s values
and beliefs. Note that, in contrast to our setting, this would require a significant amount of data for
each agent. Still, how should these policies be aggregated into a single policy? We can cast this as a
problem of allocating public goods. A naïve approach would compute each agent’s reward for each
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possible policy, and choose the policy that, say, maximizes the Nash social welfare [7]; but this is
a pipe dream, due to seemingly insurmountable computational barriers. The discovery of tractable
methods for this policy aggregation problem may provide attractive alternatives to the approach
presented in this paper.
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A IRL Algorithms

In this appendix we identify two well-known algorithms that match feature expectations.

A.1 Apprenticeship Learning

Under the classic Apprenticeship Learning algorithm, designed by Abbeel and Ng [1], a policy π(0)

is selected to begin with. Its feature expectation µ(π(0)) is computed and added to the bag of feature
expectations. At each step,

t(i) = max
w:‖w‖2≤1

min
j∈{0,..,i−1}

wᵀ

(
1

n

n∑
i=1

φ(τi)− µ
(
π(j)

))

is computed along with the weight w(i) that achieved this. When t(i) ≤ ε the algorithm terminates,
otherwise the associated optimal policy π(i) is computed, and its corresponding feature expectation
vector µ(π(i)) is added to the bag of feature expectations. The algorithm provides the following
guarantee.

Theorem A.1 (adapted from Abbeel and Ng 2004). For any ε > 0, the Apprenticeship Learning
algorithm terminates with t(i) ≤ ε after a number of iterations bounded by

T = O

(
d

(1− γ)2ε2
ln

d

(1− γ)ε

)
,

and outputs a mixture over π(1), ..., π(T ) that ε-matches the feature expectations of the observed
trajectories.

Note that it is necessary for us to use a randomized policy, in contrast to the case where a single
deterministic policy generated all the trajectory samples, as, in our case, typically there is no single
deterministic policy that matches the feature expectations of the observed trajectories.

10



A.2 Max Entropy

We next discuss the Max Entropy algorithm of Ziebart et al. [29], which optimizes the max entropy
of the probability distribution over trajectories subject to the distribution satisfying approximate
feature matching. This is done to resolve the potential ambiguity of there being multiple stochastic
policies that satisfy feature matching. Optimizing entropy is equivalent to maximizing the regularized
likelihood L(w) of the observed trajectories. Specifically, the objective is

L(w) = max
w

n∑
i=1

log Pr[τi|w, T ]−
d∑
i=1

ρi‖wi‖1,

with

Pr[τi|w, T ] =
ew

ᵀφ(τi)

Z(w, T )

∏
st,at,st+1∈τi

T (st, at, st+1).

The regularization term is introduced to allow for approximate feature matching since the observed
empirical feature expectation may differ from the true expectation. Let ρ be an upper bound on this
difference, i.e., for all k = 1, . . . , d,

ρk ≥

∣∣∣∣∣ 1n
n∑
i=1

φ(τi)k − E

[
1

n

n∑
i=1

φ(τi)k

]∣∣∣∣∣ .
One may then derive that the gradient of L(w) is the difference between the feature expectation
induced w and the observed feature expectation.
Theorem A.2 (adapted from Ziebart et al. 2008). Let ε > 0, and assume that the Max Entropy
algorithm finds w such that |∇L(w)| < ε, then this w corresponds to a randomized policy that
(ε+ ‖ρ‖1)-matches the feature expectations of the observed trajectories.

The assumption on the gradient is needed because the above optimization objective is derived only
with the approximate feature matching constraint. MDP dynamics is not explicitly encoded into
the optimization. Instead, heuristically, the likelihood of each trajectory Pr[τi|w, T ] is weighted by
the product of the transition probabilities of its steps. The follow-up work of Ziebart [28] addresses
this by explicitly introducing MDP constraints into the optimization, and optimizing for the causal
entropy, thereby achieving unconditional feature matching.

B Proof of Theorem 3.2

We need to bound the difference between Rw?(π̃) and Rw? (πu). First, recall that π̃ ε/3−matches
the feature expectations of τ1, . . . , τn. It holds that∣∣∣∣∣Rw?(π̃)− (w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)∣∣∣∣∣ =

∣∣∣∣∣(w?)ᵀ

(
µ(π̃)− 1

n

n∑
i=1

φ(τi)

)∣∣∣∣∣
≤ ‖w?‖2

∥∥∥∥∥µ(π̃)− 1

n

n∑
i=1

φ(τi)

∥∥∥∥∥
2

≤ ε

3
,

(1)

where the second transition follows from the Cauchy–Schwarz inequality, and the last from the
assumption that ‖w?‖2 ≤ 1. Hence, it is sufficient to demonstrate that, with probability at least 1− δ,∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
−Rw?(πu)

∣∣∣∣∣ ≤ 2ε

3
, (2)

as the theorem would then follow from Equations (1), and (2) by the triangle inequality.

We note that the difference on the left hand side of Equation (2) is due to two sources of noise.

1. The finite number of samples of trajectories which, in our setting, originates from multiple
policies.
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2. The truncated trajectories τi which are limited to L steps.

Formally, let τ ′i denote the infinite trajectory for each i, then the difference can be written as∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
−Rw?(πu)

∣∣∣∣∣
≤

∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣+

∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)
−Rw? (πu)

∣∣∣∣∣
Bounding finite sample noise. We wish to bound:∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)
−Rw? (πu)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
(

n∑
i=1

(w?)ᵀ(φ(τ ′i)− µ(πi))

)∣∣∣∣∣ . (3)

Define random variable Zi = (w?)ᵀ(φ(τ ′i)− µ(πi)). Then the right-hand side of Equation (3) may
be expressed as | 1n

∑n
i=1 Zi|. Furthermore, Zi is such that E[φ(τ ′i)k] = µ(πi)k for all k = 1, . . . , d.

This is because a policy πi defines a distribution over trajectories, and τ ′i is a draw from this
distribution. Using the linearity of expectation, it follows that

E[Zi] = (w?)ᵀE[φ(τ ′i)− µ(πi)] = 0.

Moreover,

|Zi| ≤ ‖w?‖2‖φ(τ ′i)‖2 + ‖w?‖2‖µ(πi)‖2 ≤
2
√
d

1− γ
,

since ‖φ(s, ·)‖∞ = 1. Thus, using Hoeffding’s inequality, we conclude that

Pr

[∣∣∣∣∣ 1n
n∑
i=1

Zi

∣∣∣∣∣ > ε

3

]
≤ 2exp

−2n
(
ε
3

)2
( 4
√
d

1−γ )2

 ≤ δ,
where the last transition holds by our choice of n.

Bounding bias due to truncated trajectories. We wish to bound:∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣ .
For each trajectory τi, truncating after L steps incurs a reward difference of:

|(w?)ᵀφ(τ ′i)− (w?)ᵀφ(τi)| =

∣∣∣∣∣(w?)ᵀ
∞∑
t=L

γtφ(τ ′i(st), τ
′
i(at))

∣∣∣∣∣
≤
∞∑
t=L

γt‖w?‖2‖φ(τ ′i(st), τ
′
i(at))‖2

≤ γL
√
d

1− γ
≤ ε

3
,

where the third transition holds because ‖φ(τi(st), τi(at))‖2 ≤
√
d, and the last transition follows

from our choice of L. Hence, we obtain∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣ ≤ 1

n

n∑
i=1

|(w?)ᵀφ(τi)− (w?)ᵀφ(τ ′i)| ≤
ε

3
.
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C Proof of Theorem 4.2
As πu is a uniform distribution over the policies π1, . . . , πn, its expected reward is given by

Rw?(πu) =
1

n

n∑
i=1

Rw?(πi). (4)

Observe that Rw?(πi) is a random variable which is i.i.d. across i, as the corresponding noise ηi is
i.i.d. as well. We analyze the expectation of the difference with respect to Rw?(π?).

First, note that for a weight vector w and policy π,

Rw(π) =

∞∑
t=0

γt
∑
s∈S

Pπ(s, t)wᵀφ(s, π(s)), (5)

where Pπ(s, t) denotes the probability of being in state s on executing policy π from the start. Hence,
for each i ∈ N , we have
Rw?(π?)−Rw?(πi)

=

∞∑
t=0

γt
∑
s∈S

[
Pπ?(s, t)(w?)ᵀφ(s, π?(s))− Pπi(s, t)(w?)ᵀφ(s, πi(s))

]
=

∞∑
t=0

γt
∑
s∈S

[
Pπ?(s, t)(wi − ηi)

ᵀφ(s, π?(s))− Pπi(s, t)(wi − ηi)
ᵀφ(s, πi(s))

]
= Rwi(π?)−Rwi(πi) +

∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)ηᵀ

i φ(s, π?(s)) + Pπi(s, t)η
ᵀ
i φ(s, πi(s))

]
≤
∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)ηᵀ

i φ(s, π?(s)) + Pπi(s, t)η
ᵀ
i φ(s, πi(s))

]

=

d∑
k=1

ηik

[ ∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)φ(s, π?(s))k + Pπi(s, t)φ(s, πi(s))k

]]

:=

d∑
k=1

ηikαik, (6)

where the inequality holds since Rwi(πi) ≥ Rwi(π?), which, in turn, holds because πi is optimal
under wi.

Using the assumption that ‖φ(s, a)‖∞ ≤ 1, it holds that
∣∣∑

s∈S Pπ(s, t)φ(s, a)k
∣∣ ≤ 1 for any policy

π. We can therefore bound |αik| as follows.

|αik| ≤
∞∑
t=0

γt

∣∣∣∣∣∑
s∈S

[−Pπ?(s, t)φ(s, π?(s))k + Pπi(s, t)φ(s, πi(s))k]

∣∣∣∣∣
≤
∞∑
t=0

γt

[∣∣∣∣∣∑
s∈S

Pπ?(s, t)φ(s, π?(s))k

∣∣∣∣∣+

∣∣∣∣∣∑
s∈S

Pπi(s, t)φ(s, πi(s))k

∣∣∣∣∣
]

≤ 2

1− γ
.

Therefore, it holds that

‖αi‖2 =

√√√√ d∑
k=1

α2
ik ≤

√√√√ d∑
k=1

(
2

1− γ

)2

=
2
√
d

(1− γ)
.

Using this bound along with Equation (6), we obtain

Rw?(π?)−Rw?(πi) ≤
d∑
k=1

ηikαik ≤ ‖ηi‖2‖αi‖2 ≤
2
√
d

(1− γ)

√√√√ d∑
k=1

η2ik
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=
2d

(1− γ)

√√√√1

d

d∑
k=1

η2ik. (7)

Denote u = E[ 1d
∑d
k=1 η

2
ik]. To compute the expected value of the previous expression (with respect

to the randomness of the noise ηi), we analyze

E


√√√√1

d

d∑
k=1

η2ik

 =

∫ ∞

0

Pr


√√√√1

d

d∑
k=1

η2ik ≥ x

 dx =

∫ ∞

0

Pr

[
1

d

d∑
k=1

η2ik ≥ x2
]
dx

=

∫ √
u

0

Pr

[
1

d

d∑
k=1

η2ik ≥ x2
]
dx+

∫ ∞

√
u

Pr

[
1

d

d∑
k=1

η2ik ≥ x2
]
dx

≤
∫ √u
0

1 dx+

∫ ∞

√
u

Pr

[
1

d

d∑
k=1

η2ik ≥ x2
]
dx

=
√
u+

∫ ∞

0

Pr

[
1

d

d∑
k=1

η2ik ≥ u+ t

]
1

2
√
u+ t

dt

≤
√
u+

1

2
√
u

∫ ∞

0

Pr

[
1

d

d∑
k=1

η2ik ≥ u+ t

]
dt,

where the fourth transition is obtained by changing the variable using x =
√
u+ t. But since each

η2ik is sub-exponential with parameters (ν, b), from Lemma 4.1 we have

Pr

[
1

d

d∑
k=1

η2ik ≥ u+ t

]
≤

{
exp

(
− dt2

2ν2

)
for 0 ≤ t ≤ ν2

b

exp
(
− dt

2b

)
for t > ν2

b

.

Plugging this into the upper bound for the expected value gives us

E


√√√√1

d

d∑
k=1

η2ik

 ≤ √u+
1

2
√
u

∫ ∞

0

Pr

[
1

d

d∑
k=1

η2ik ≥ u+ t

]
dt

≤
√
u+

1

2
√
u

[∫ ν2

b

0

exp

(
− dt

2

2ν2

)
dt+

∫ ∞
ν2

b

exp

(
−dt

2b

)
dt

]

=
√
u+

1

2
√
u

[∫ ν
√
d
b

0

exp

(
−z

2

2

)
ν√
d
dz +

(
−2b

d

)
exp

(
−dt

2b

) ∣∣∣∣∞
ν2

b

]

=
√
u+

1

2
√
u

[√
2π

d
ν

∫ ν
√
d
b

0

1√
2π

exp

(
−z

2

2

)
dz +

2b

d
exp

(
−dν

2

2b2

)]

=
√
u+

1

2
√
u

[√
2π

d
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

2b

d
exp

(
−dν

2

2b2

)]

=
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)
, (8)

where the transition in the third line is obtained by changing the variable using t = v√
d
z, and Φ

denotes the CDF of a standard normal distribution. Hence, taking an expected value for Equation (7)
and plugging in Equation (8), we obtain

E
[
Rw?(π?)−Rw?(πi)

]
≤ 2d

(1− γ)

[
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)]
.
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Rearranging this equation, we have

E
[
Rw?(πi)

]
≥ Rw?(π?)− 2d

(1− γ)

[
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)]
.

Taking an expectation over Equation (4) gives us E
[
Rw?(πu)

]
= E

[
Rw?(πi)

]
, and the theorem

directly follows.

We remark that Theorem 4.2 can easily be strengthened to obtain a high probability result (at the cost
of complicating its statement). Indeed, the reward of the uniform mixture Rw?(πu) is the average of
the individual policy rewards Rw?(πi), which are i.i.d. Further, each of these rewards is bounded,
because of the constraints on w? and φ. Hence, Hoeffding’s inequality would show that Rw?(πu)
strongly concentrates around its mean.

D Proof of Lemma 4.3

Before proving the lemma, we look at a relatively simple example that we will use later to complete
the proof.

D.1 Simpler Example

Consider an MDP with a single state s, and three actions {a, b, c}. Since s is the only state,
T (s, a, s) = T (s, b, s) = T (s, c, s) = 1, and D is degenerate at s. This implies that there are only
three possible policies, denoted by πa, πb, πc (which take actions a, b, c respectively from s). Let the
feature expectations be

φ(s, a) = [0.5, 0.5],

φ(s, b) = [1,−δ/2],

φ(s, c) = [−δ/2, 1],

where δ > 0 is a parameter. Hence, the feature expectations of the policies {πa, πb, πc} are
respectively

µa =
1

2(1− γ)
[1, 1],

µb =
1

2(1− γ)
[2,−δ],

µc =
1

2(1− γ)
[−δ, 2].

Let the ground truth weight vector be w? = (vo, vo), where vo is a “large enough” positive constant.
In particular, vo is such that the noised weight vector w = w? + η has probability strictly more
than 1/3 of lying in the first quadrant. For concreteness, set vo to be such that Pr(w > 0) = 1/2.
Such a point always exists for any noise distribution (that is continuous and i.i.d. across coordinates).
Specifically, it is attained at vo = −F−1(1− 1√

2
), where F−1 is the inverse CDF of each coordinate

of the noise distribution. This is because at this value of vo,

Pr(w > 0) = Pr((vo, vo) + (η1, η2) > 0) = Pr(vo + η1 > 0)2

= Pr(η1 > −vo)2 = (1− F (−vo))2 =

(
1√
2

)2

=
1

2
.

Let us look at weight vectors w for which each of the three policies πa, πb and πc are optimal. πa
is the optimal policy when wᵀµa > wᵀµb and wᵀµa > wᵀµc, which is the intersection of the
half-spaces wᵀ(−1, 1 + δ) > 0 and wᵀ(1 + δ,−1) > 0. On the other hand, πb is optimal when
wᵀµb > wᵀµa and wᵀµb > wᵀµc, which is the intersection of the half-spaces wᵀ(−1, 1 + δ) < 0
and wᵀ(1,−1) > 0. Finally, πc is optimal when wᵀµc > wᵀµa and wᵀµc > wᵀµb, which is the
intersection of the half-spaces wᵀ(1 + δ,−1) < 0 and wᵀ(1,−1) < 0. These regions are illustrated
in Figure 1 for different values of δ. Informally, as δ is decreased, the lines separating (πa, πc) and
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(πa, πb) move closer to each other (as shown for δ = 0.25), while as δ is increased, these lines move
away from each other (as shown for δ = 10).

Formally, let Rδ denote the region of w for which πa is optimal (i.e. the blue region in the figures),
that is,

Rδ =

{
w :

w1

1 + δ
< w2 < w1(1 + δ)

}
.

This is bounded below by the line w1 = (1 + δ)w2, which makes an angle of θδ = Tan−1( 1
1+δ ) with

the x-axis, and bounded above by the line w2 = (1 + δ)w1, which makes an angle of θδ with the
y-axis. We first show that for any value of δ, the regions of πb and πc have the exact same probability.
The probability that πb is optimal is the probability of the orange region which is

Pr(πb is optimal) =

∫ 0

−∞

∫ w1

−∞
Pr(w)dw2dw1 +

∫ ∞
0

∫ w1
(1+δ)

−∞
Pr(w)dw2dw1

=

∫ 0

−∞

∫ t2

−∞
Pr(t2, t1)dt1dt2 +

∫ ∞
0

∫ t2
(1+δ)

−∞
Pr(t2, t1)dt1dt2

=

∫ 0

−∞

∫ t2

−∞
Pr(t1, t2)dt1dt2 +

∫ ∞
0

∫ t2
(1+δ)

−∞
Pr(t1, t2)dt1dt2

= Pr(πc is optimal),

where the second equality holds by changing the variables as t1 = w2 and t2 = w1, and the third one
holds because the noise distribution is i.i.d. across the coordinates. Hence, we have

Pr(πb is optimal) = Pr(πc is optimal) =
1− Pr(Rδ)

2
,

as Rδ denotes the region where πa is optimal.

Finally, we show that there exists a value of δ such that Pr(Rδ) = 1/3. Observe that as δ → 0, the
lines bounding the region Rδ make angles that approach Tan−1(1) = π/4 and the two lines touch,
causing the region to have zero probability. On the other hand, as δ → ∞, the angles these lines
make approach Tan−1(0) = 0, so the region coincides with the first quadrant in the limit. Based on
our selection of vo, the probability of this region is exactly 1/2. Hence, as δ varies from 0 to∞, the
probability of the region Rδ changes from 0 to 1/2. Next, note that as θδ = Tan−1( 1

1+δ ), this angle
changes continuously as δ changes, and hence does the region Rδ. Finally, as the noise distribution
is continuous, the probability of this region Rδ also changes continuously as δ is varied. That is,
limε→0 Pr(Rδ+ε) = Pr(Rδ). Coupling this with the fact that Pr(Rδ) changes from 0 to 1/2 as δ
changes from 0 to∞, it follows that there exists a value of δ in between such that Pr(Rδ) is exactly
1/3. Denote this value of δ by δo.

We conclude that for w? = (vo, vo) and our MDP construction with δ = δo, P(w?) = (1
3 ,

1
3 ,

1
3 ).

D.2 Completing the Proof

Consider the same MDP as in Section D.1. However, for this example, let the feature expectations be

φ(s, a) = [0.5, 0.5 , −δo/2, 1],

φ(s, b) = [1,−δo/2, 0.5, 0.5],

φ(s, c) = [−δo/2, 1, 1,−δo/2],

where δo is as defined in Section D.1. Hence, the feature expectations of the policies {πa, πb, πc} are
respectively

µa =
1

2(1− γ)
[1, 1 , −δo, 2],

µb =
1

2(1− γ)
[2,−δo, 1, 1],

µc =
1

2(1− γ)
[−δo, 2, 2,−δo].
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Consider two weight vectors w?
a = (vo, vo, 0, 0) and w?

b = (0, 0, vo, vo), where vo is as defined in
Section D.1. Since w?

a completely discards the last two coordinates, it immediately follows from
the example of Section D.1 that P(w?

a) = ( 1
3 ,

1
3 ,

1
3 ). Similarly, the same analysis on the last two

coordinates shows that P(w?
b ) = (1

3 ,
1
3 ,

1
3 ) as well. On the other hand, the optimal policy according

to w?
a is πa while the optimal policy according to w?

b is πb. Hence, π?a 6= π?b , but we still have
P(w?

a) = P(w?
b ), leading to non-identifiability.

E Proof of Theorem 4.4
The proof of this theorem strongly relies on Lemma 4.3 and the example used to prove it. Consider
the MDP as in Section D.2, but now with 6 features instead of just 4. In particular, let the feature
expectations of the three policies be

φ(s, a) = [0.5, 0.5 , −δo/2, 1, 1,−δo/2],

φ(s, b) = [1,−δo/2, 0.5, 0.5 , −δo/2, 1],

φ(s, c) = [−δo/2, 1, 1,−δo/2, 0.5, 0.5 ].

Hence, the feature expectations of the policies {πa, πb, πc} are respectively

µa =
1

2(1− γ)
[1, 1 , −δo, 2, 2,−δo],

µb =
1

2(1− γ)
[2,−δo, 1, 1 ,−δo, 2],

µc =
1

2(1− γ)
[−δo, 2, 2,−δo, 1, 1 ].

Consider three weight vectors
w?
a = (vo, vo, 0, 0, 0, 0),

w?
b = (0, 0, vo, vo, 0, 0),

w?
c = (0, 0, 0, 0, vo, vo).

Since w?
a completely discards the last four coordinates, the example of Section D.1 shows that

P(w?
a) = ( 1

3 ,
1
3 ,

1
3 ). Similarly, the same analysis on the middle two and last two coordinates shows

thatP(w?
b ) = ( 1

3 ,
1
3 ,

1
3 ) andP(w?

c ) = ( 1
3 ,

1
3 ,

1
3 ), respectively. However, the optimal policy according

to w?
a is πa, according to w?

b it is πb, and according to w?
c it is πc.

Now, consider an arbitrary algorithm A, which takes as input a distribution over policies and outputs
a (possibly randomized) policy. Look at the randomized policy A( 1

3 ,
1
3 ,

1
3 ) returned by A when the

input is ( 1
3 ,

1
3 ,

1
3 ), and let pa, pb, pc be the probabilities it assigns to playing πa, πb and πc. Let pi

(where i ∈ {a, b, c}) denote the smallest probability among the three. Then, pi ≤ 1/3. Pick the
ground truth weight vector to be w?

i . As P(w?
a) = P(w?

b ) = P(w?
c ), the data generated by w?

i

follows the distribution
(
1
3 ,

1
3 ,

1
3

)
, and the policy distribution chosen by A is simply (pa, pb, pc).

Now, with probability pi ≤ 1/3, the policy played is πi leading to a reward of w?
i
ᵀµi = vo

(1−γ) ,
and with probability (1 − pi), the policy played is some πj (where j 6= i) leading to a reward of
w?
i
ᵀµj = (2−δo)

2
vo

(1−γ) (which is independent of the value of j).5 Hence, the expected reward of
algorithm A in this case is

pi ·
vo

(1− γ)
+ (1− pi) ·

(2− δo)
2

vo
(1− γ)

=
(2− δo)

2

vo
(1− γ)

+ pi ·
δo
2

vo
(1− γ)

≤ (2− δo)vo
2(1− γ)

+
δovo

6(1− γ)
.

Observe that the uniform mixture πu in this case is just the input distribution ( 1
3 ,

1
3 ,

1
3 ). Whatever be

the chosen w?
i , the expected reward of this distribution is exactly

1

3
· vo

(1− γ)
+

2

3
· (2− δo)

2

vo
(1− γ)

=
(2− δo)vo
2(1− γ)

+
δovo

6(1− γ)
,

5An interesting point to note is that by carefully selecting vo, one could get the corresponding δo to be
arbitrarily large, thereby causing the optimal and suboptimal policies to have a much larger gap (equally affecting
the uniform mixture πu as well).
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which is nothing but the upper bound on the expected reward of A. Hence, for any algorithm A there
exists a ground truth weight vector w?

i such that A has an expected reward at most that of πu (which
in turn is strictly suboptimal).
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