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Abstract

We study the paradigmatic fair division problem of fairly al-
locating a divisible good among agents with heterogeneous
preferences, commonly known as cake cutting. Classic cake
cutting protocols are susceptible to manipulation. Do their
strategic outcomes still guarantee fairness? To address this
question we adopt a novel algorithmic approach, proposing a
concrete computational model and reasoning about the game-
theoretic properties of algorithms that operate in this model.
Specifically, we show that each protocol in the class of gen-
eralized cut and choose (GCC) protocols — which includes
the most important discrete cake cutting protocols — is guar-
anteed to have approximate subgame perfect Nash equilib-
ria, or even exact equilibria if the protocol’s tie-breaking rule
is flexible. We further observe that the (approximate) equi-
libria of proportional protocols — which guarantee each of
the n agents a 1/n-fraction of the cake — must be (approx-
imately) proportional, thereby answering the above question
in the positive (at least for one common notion of fairness).

1 Introduction

A large body of literature deals with the so-called cake cut-
ting problem — a misleadingly childish metaphor for the
challenging and important task of fairly dividing a hetero-
geneous divisible good among multiple agents (see the re-
cent survey by Procaccia (2013) and the books by Brams
and Taylor (1996) and Robertson and Webb (1998)). In par-
ticular, there is a significant amount of AI work on cake cut-
ting (Procaccia 2009; Caragiannis, Lai, and Procaccia 2011;
Brams et al. 2012; Bei et al. 2012; Aumann, Dombb,
and Hassidim 2013; Kurokawa, Lai, and Procaccia 2013;
Brânzei, Procaccia, and Zhang 2013; Brânzei and Miltersen
2013; Chen et al. 2013; Balkanski et al. 2014; Brânzei
and Miltersen 2015; Segal-Halevi, Hassidim, and Aumann
2015), which is closely intertwined with emerging real-
world applications of fair division more broadly (Goldman
and Procaccia 2014; Kurokawa, Procaccia, and Shah 2015).

Going back to the word “fairly”, two formal notions
of fairness have emerged as the most appealing and well-
studied in the context of cake cutting: proportionality, in
which each of the n agents receives at least a 1/n-fraction of
the entire cake according to its valuation; and envy-freeness,
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which stipulates that no agent would wish to swap its own
piece with that of another agent. At the heart of the cake cut-
ting endeavor is the design of cake cutting protocols, which
specify an interaction between agents — typically via iter-
ative steps of manipulating the cake — such that the final
allocation is guaranteed to be proportional or envy-free.

The simplest cake cutting protocol is known as cut and
choose, and is designed for two agents. The first agent cuts
the cake in two pieces that it values equally; the second agent
then chooses the piece that it prefers, leaving the first agent
with the remaining piece. It is easy to see that this protocol
yields a proportional and envy-free allocation (in fact these
two notions coincide when there are only two agents and the
entire cake is allocated). However, taking a game-theoretic
point of view, it is immediately apparent that the agents can
often do better by disobeying the protocol when they know
each other’s valuations. For example, in the cut and choose
protocol, assume the first agent only desires a specific small
piece of cake, whereas the second agent uniformly values
the cake. The first agent can obtain its entire desired piece,
instead of just half of it, by carving that piece out.

So how would strategic agents behave when faced with
the cut and choose protocol? A standard way of answering
this question employs the notion of Nash equilibrium: each
agent would use a strategy that is a best response to the other
agent’s strategy. To set up a Nash equilibrium, suppose that
the first agent cuts two pieces that the second agent values
equally; the second agent selects its more preferred piece,
and the one less preferred by the first agent in case of a tie.
Clearly, the second agent cannot gain from deviating, as it is
selecting a piece that is at least as preferred as the other. As
for the first agent, if it makes its preferred piece even big-
ger, the second agent would choose that piece, making the
first agent worse off. Interestingly enough, in this equilib-
rium the tables are turned; now it is the second agent who
is getting exactly half of its value for the whole cake, while
the first agent generally gets more. Crucially, the equilibrium
outcome is also proportional and envy-free. In other words,
even though the agents are strategizing rather than follow-
ing the protocol, the outcome in equilibrium has the same
fairness properties as the “honest” outcome!

With this motivating example in mind, we would like to
make general statements regarding the equilibria of cake
cutting protocols. We wish to identify a general family of
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cake cutting protocols — which captures the classic cake
cutting protocols — so that each protocol in the family is
guaranteed to possess (approximate) equilibria. Moreover,
we wish to argue that these equilibrium outcomes are fair.
Ultimately, our goal is to be able to reason about the fair-
ness of cake divisions that are obtained as outcomes when
agents are presented with a standard cake cutting protocol
and behave strategically.

1.1 Model and Results

To set the stage for a result that encompasses classic cake
cutting protocols, we introduce (in Section 2) the class of
generalized cut and choose (GCC) protocols. A GCC pro-
tocol is represented by a tree, where each node is associ-
ated with the action of an agent. There are two types of
nodes: a cut node, which instructs the agent to make a cut
between two existing cuts; and a choose node, which offers
the agent a choice between a collection of pieces that are
induced by existing cuts. Moreover, we assume that the pro-
gression from a node to one of its children depends only on
the relative positions of the cuts (in a sense to be explained
formally below). We argue that classic protocols — such as
Dubins-Spanier (1961), Selfridge-Conway (see (Robertson
and Webb 1998)), Even-Paz (1984), as well as the original
cut and choose protocol — are all GCC protocols. We view
the definition of the class of GCC protocols as one of our
main contributions.

In Section 3, we observe that GCC protocols may not have
exact Nash equilibria (NE), then explore ways of circum-
venting this issue, which give rise to our two main results.

1. We prove that every GCC protocol has at least one ε-NE
for every ε > 0, in which agents cannot gain more than ε
by deviating, and ε can be chosen to be arbitrarily small.
In fact, we establish this result for a stronger equilibrium
notion, (approximate) subgame perfect Nash equilibrium
(SPNE), which is, intuitively, a strategy profile where the
strategies are in NE even if the game starts from an arbi-
trary point.

2. We slightly augment the class of GCC protocols by giving
them the ability to make informed tie-breaking decisions
that depend on the entire history of play, in cases where
multiple cuts are made at the exact same point. While,
for some valuation functions of the agents, a GCC pro-
tocol may not possess any exact SPNE, we prove that it
is always possible to modify the protocol’s tie-breaking
scheme to obtain SPNE.
In Section 4, we observe that for any proportional pro-

tocol, the outcome in any ε-equilibrium must be an ε-
proportional division. We conclude that under the classic
cake cutting protocols listed above — which are all pro-
portional — strategic behavior preserves the proportional-
ity of the outcome, either approximately, or exactly under
informed tie-breaking.

One may wonder, though, whether an analogous result
is true with respect to envy-freeness. We give a negative
answer, by constructing an envy-inducing SPNE under the
Selfridge-Conway protocol, a well-known envy-free proto-
col for three agents. However, we are able to design a curious

GCC protocol in which every NE outcome is a contiguous
envy-free allocation and vice versa, that is, the set of NE
outcomes coincides with the set of contiguous envy-free al-
locations. It remains open whether a similar result can be
obtained for SPNE instead of NE.

1.2 Related Work

The notion of GCC protocols is inspired by the Robertson-
Webb (1998) model of cake cutting — a concrete query
model that specifies how a cake cutting protocol may inter-
act with the agents. This model underpins a significant body
of work in theoretical computer science and AI, which fo-
cuses on the complexity of achieving different fairness or ef-
ficiency notions in cake cutting (Edmonds and Pruhs 2006a;
2006b; Woeginger and Sgall 2007; Deng, Qi, and Saberi
2012; Aumann, Dombb, and Hassidim 2013; Procaccia
2009; Kurokawa, Lai, and Procaccia 2013). In Section 2, we
describe the Roberston-Webb model in detail, and explain
why it is inappropriate for reasoning about equilibria.

In the context of the strategic aspects of cake cutting,
Nicolò and Yu (2008) were the first to suggest equilibrium
analysis for cake cutting protocols. Focusing exclusively on
the case of two agents, they design a specific cake cutting
protocol whose unique SPNE outcome is envy-free. And
while the original cut and choose protocol also provides this
guarantee, it is not “procedural envy free” because the cut-
ter would like to exchange roles with the chooser; the two-
agent protocol of Nicoló and Yu aims to solve this diffi-
culty. Brânzei and Miltersen (2013) also investigate equi-
libria in cake cutting, but in contrast to our work they focus
on one cake cutting protocol — the Dubins-Spanier protocol
— and restrict the space of possible strategies to threshold
strategies. Under this assumption, they characterize NE out-
comes, and in particular they show that in NE the allocation
is envy-free. Brânzei and Miltersen also prove the existence
of ε-equilibria that are ε-envy-free; again, this result relies
on their strong restriction of the strategy space, and applies
to one specific protocol.

Several papers by computer scientists (Chen et al. 2013;
Mossel and Tamuz 2010; Maya and Nisan 2012) take a
mechanism design approach to cake cutting; their goal is
to design cake cutting protocols that are strategyproof, in
the sense that agents can never benefit from manipulat-
ing the protocol. This turns out to be an almost impossi-
ble task (Zhou 1991; Brânzei and Miltersen 2015); positive
results are obtained by either making extremely strong as-
sumptions (agents’ valuations are highly structured), or by
employing randomization and significantly weakening the
desired properties. In contrast, our main results, given in
Section 3, deal with strategic outcomes under a large class
of cake cutting protocols, and aim to capture well-known
protocols; our result of Section 4 is a positive result that
achieves fairness “only” in equilibrium, but without impos-
ing any restrictions on the agents’ valuations.

2 The Model

The cake cutting literature typically represents the cake as
the interval [0, 1]. There is a set of agents N = {1, . . . , n},

412



and each agent i ∈ N is endowed with a valuation func-
tion Vi that assigns a value to every subinterval of [0, 1].
These values are induced by a non-negative continuous
value density function vi, so that for an interval I , Vi(I) =∫
x∈I

vi(x) dx. By definition, Vi satisfies the first two prop-
erties below; the third is an assumption that is made w.l.o.g.

1. Additivity: For every two disjoint intervals I1 and I2,
Vi(I1 ∪ I2) = Vi(I1) + Vi(I2).

2. Divisibility: For every interval I ⊆ [0, 1] and 0 ≤ λ ≤ 1
there is a subinterval I ′ ⊆ I such that Vi(I

′) = λVi(I).

3. Normalization: Vi([0, 1]) = 1.

Note that valuation functions are non-atomic, i.e., they as-
sign zero value to points. This allows us to disregard the
boundaries of intervals, and in particular we treat intervals
that overlap at their boundary as disjoint. We sometimes ex-
plicitly assume that the value density functions are strictly
positive, i.e., vi(x) > 0 for all x ∈ [0, 1] and for all i ∈ N ;
this implies that Vi([x, y]) > 0 for all x < y, x, y ∈ [0, 1].

A piece of cake is a finite union of disjoint intervals.
We are interested in allocations of disjoint pieces of cake
X1, . . . , Xn, where Xi is the piece allocated to agent i ∈ N .
A piece is contiguous if it consists of a single interval.

We study two fairness notions. An allocation X is pro-
portional if for all i ∈ N , Vi(Xi) ≥ 1/n; and envy-free if
for all i, j ∈ N , Vi(Xi) ≥ Vi(Xj). Note that envy-freeness
implies proportionality when the entire cake is allocated.

2.1 Generalized Cut and Choose Protocols

The standard communication model in cake cutting was pro-
posed by Robertson and Webb (1998); it restricts the interac-
tion between the protocol and agents to two types of queries:

• Cut query: Cuti(x, α) asks agent i to return a point y such
that Vi([x, y]) = α.

• Evaluate query: Evaluatei(x, y) asks agent i to return a
value α such that Vi([x, y]) = α.

Note that in the RW model, a protocol could allocate pieces
depending on whether a particular cut was made at a specific
point (see Algorithm 2). More generally, a protocol in the
RW model has a property such as envy-freeness if, roughly
speaking, it gathers enough information so that there exists
an allocation such that for any valuation function consistent
with the answers to the queries, the allocation is envy-free.
Since the RW model does not specify how the allocation
is computed, there need not exist a succinct representation
of the allocation that arises as the outcome of a protocol,
which makes it difficult to analyze the strategic properties of
protocols in the RW model.

For this reason, we define a generic class of protocols
that are implementable with natural operations, which cap-
ture all bounded1 and discrete cake cutting algorithms, such
as cut and choose, Dubins-Spanier, Even-Paz, Successive-
Pairs, and Selfridge-Conway (see, e.g., (Procaccia 2013)).

1In the sense that the number of operations is upper-bounded
by a function that takes the number of agents n as input.

agent 1 Cuts in {[0, 1]} // @x
agent 1 Cuts in {[0, 1]} // @y
agent 1 Cuts in {[0, 1]} // @z
if (x < y < z) then

agent 1 Chooses from {[x, y], [y, z]}
end if

Algorithm 1: A GCC protocol. The notation “// @x” assigns
the symbolic name x to the cut point made by agent 1.

agent 1 Cuts in {[0, 1]} // @x
if
(
x = 1

3

)
then

agent 1 Chooses from {[0, x], [x, 1]}
end if

Algorithm 2: A non-GCC protocol.

At a high level, the standard protocols are implemented us-
ing a sequence of natural instructions, each of which is ei-
ther a Cut operation, in which some agent is asked to make
a cut in a specified region of the cake; or a Choose opera-
tion, in which some agent is asked to take a piece from a set
of already demarcated pieces indicated by the protocol. In
addition, every node in the decision tree of the protocol is
based exclusively on the execution history and absolute or-
dering of the cut points, which can be verified with any of
the following operators: <,≤,=,≥, >.

Formally, a generalized cut and choose (GCC) protocol is
implemented exclusively with the following instructions:

• Cut: The syntax is “i Cuts in S”, where S =
{[x1, y1], . . . , [xm, ym]} is a set of contiguous pieces (in-
tervals), such that the endpoints of every piece [xj , yj ]
are 0, 1, or cuts made in previous steps of the protocol.
Agent i can make a cut at any point z ∈ [xj , yj ], for some
j ∈ {1, . . . ,m}.

• Choose: The syntax is “i Chooses from S”, where S =
{[x1, y1], . . . , [xm, ym]} is a set of contiguous pieces,
such that the endpoints of every piece [xj , yj ] ∈ S are
0, 1, or cuts made in the previous steps of the protocol.
Agent i can choose any single piece [xj , yj ] from S to
keep from that point on.

• If-Else Statements: The conditions depend on the result of
choose queries and the absolute order of all the cut points
made in the previous steps.

A GCC protocol uniquely identifies every contiguous
piece by the symbolic names of all the cut points contained
in it. For example, Algorithm 1 is a GCC protocol. Algo-
rithm 2 is not a GCC protocol, because it verifies that the
point where agent 1 made a cut is exactly 1/3, whereas a
GCC protocol can only verify the ordering of the cut points
relative to each other and the endpoints of the cake. Note
that, unlike in the communication model of Robertson and
Web (1998), GCC protocols cannot obtain and use informa-
tion about the valuations of the agents — the allocation is
only decided by the agents’ Choose operations.

As an illustrative example, we now discuss why the dis-
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crete variant of the Dubins-Spanier protocol2 belongs to the
class of GCC protocols — but first we must describe the
original Dubins-Spanier protocol. Dubins-Spanier is a pro-
portional (but not envy-free) protocol for n agents, which
operates in n rounds. In round 0, each agent makes a mark
x1
i such that the piece of cake to the left of the mark is worth

1/n, i.e., Vi([0, x
1
i ]) = 1/n. Let i∗ be the agent that made

the leftmost mark; the protocol allocates the interval [0, x1
i∗ ]

to agent i∗; the allocated interval and satisfied agent are re-
moved. In round t, the same procedure is repeated with the
remaining n− t agents and the remaining cake. When there
is only one agent left, it receives the remaining cake. To see
why the protocol is proportional, first note that in round t
the remaining cake is worth at least 1− t/n to each remain-
ing agent, due to the additivity of the valuation functions
and the fact that the pieces allocated in previous rounds are
worth at most 1/n to these agents. The agent that made the
leftmost mark receives a piece that it values at 1/n. In round
n−1, the last agent is left with a piece of cake worth at least
1− (n− 1)/n = 1/n.

The protocol admits a GCC implementation as follows.
For the first round, each agent i is required to make a cut in
{[0, 1]}, at some point denoted by x1

i . The agent i∗ with the
leftmost cut x1

i∗ can be determined using If-Else statements
whose conditions only depend on the ordering of the cut
points x1

1, . . . , x
1
n. Then, agent i∗ is asked to choose “any”

piece in the singleton set {[0, x1
i∗ ]}. The subsequent rounds

are similar: at the end of every round the agent that was al-
located a piece is removed, and the protocol iterates on the
remaining agents and remaining cake. Note that agents are
not constrained to follow the protocol, i.e., they can make
their marks (in response to cut instructions) wherever they
want; nevertheless, an agent can guarantee a piece of value
at least 1/n by following the Dubins-Spanier protocol, re-
gardless of what other agents do.

While GCC protocols are quite general, a few well-known
cake cutting protocols are beyond their reach. For exam-
ple, the Brams-Taylor (1995) protocol is an envy-free pro-
tocol for n agents, and although its individual operations are
captured by the GCC formalism, the number of operations
is not bounded as a function of n (i.e., it may depend on
the valuation functions themselves). Its representation as a
GCC protocol would therefore be infinitely long. In addi-
tion, some cake cutting protocols use moving knives (see,
e.g., (Brams, Taylor, and Zwicker 1997)); for example, they
can keep track of how an agent’s value for a piece changes
as the piece smoothly grows larger. These protocols are not
discrete, and, in fact, cannot be implemented even in the
Robertson-Webb model.

We also note that the GCC model is incomparable to the
RW model. Indeed, given a protocol in the RW model, it may
not be possible to implement it as a GCC protocol because
the RW model does not indicate a specific allocation, as dis-
cussed above. Conversely, cut queries in the GCC model
cannot in general be translated into cut queries in the RW

2In fact, the discrete variant of Dubins-Spanier was invented
much earlier by Banach and Knaster and is better known as the
“last diminisher” procedure (see Steinhaus 1948).

model, as in the latter model cuts are associated with a spe-
cific value.

2.2 The Game

We study GCC protocols when the agents behave strate-
gically. Specifically, we consider a GCC protocol, coupled
with the valuation functions of the agents, as an extensive-
form game of perfect information (see, e.g., (Shoham and
Leyton-Brown 2008)). In such a game, agents execute the
Cut and Choose instructions strategically. Each agent is fully
aware of the valuation functions of the other agents and aims
to optimize its overall utility for the chosen pieces, given the
strategies of other agents.

While the perfect information model may seem restric-
tive, the same assumption is also made in previous work
on equilibria in cake cutting (Nicolò and Yu 2008; Brânzei
and Miltersen 2013). More importantly, it underpins foun-
dational papers in a variety of areas of microeconomic the-
ory, such as the seminal analysis of the Generalized Second
Price (GSP) auction by Edelman et al. (2007). A common
justification for the complete information setting, which is
becoming increasingly compelling as access to big data gets
pervasive, is that agents can obtain significant amounts of
information about each other from historical data.

In more detail, the game can be represented by a tree
(called a game tree) with Cut and Choose nodes:
• In a Cut node defined by “i cuts in S”, where S =

{[x1, y1], . . . , [xm, ym]}, the strategy space of agent i is
the set S of points where i can make a cut at this step.

• In a Choose node defined by “i chooses from S”, where
S = {[x1, y1], . . . , [xm, ym]}, the strategy space is the
set {1, . . . ,m}, i.e., the indices of the pieces that can be
chosen by the agent from the set S.
The strategy of an agent defines an action for each node

of the game tree where it executes a Cut or a Choose op-
eration. If an agent deviates, the game can follow a com-
pletely different branch of the tree, but the outcome will still
be well-defined.

The strategies of the agents are in Nash equilibrium (NE)
if no agent can improve its utility by unilaterally deviating
from its current strategy, i.e., by cutting at a different set
of points and/or by choosing different pieces. A subgame
perfect Nash equilibrium (SPNE) is a stronger equilibrium
notion, which means that the strategies are in NE in every
subtree of the game tree. In other words, even if the game
started from an arbitrary node of the game tree, the strategies
would still be in NE. An ε-NE (resp., ε-SPNE) is a relaxed
solution concept where an agent cannot gain more than ε by
deviating (resp., by deviating in any subtree).

3 Existence of Equilibria

It is well-known that finite extensive-form games of perfect
information can be solved using backward induction: start-
ing from the leaves and progressing towards the root, at each
node the relevant agent chooses an action that maximizes its
utility, given the actions that were computed for the node’s
children. The induced strategies form an SPNE. Unfortu-
nately, although we consider finite GCC protocols, we also
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need to deal with Cut nodes where the action space is infi-
nite, hence naı̈ve backward induction does not apply.

In fact, it turns out that not every GCC protocol admits an
exact NE — not to mention SPNE. For example, consider
Algorithm 1, and assume that the value density function of
agent 1 is strictly positive. Assume there exists a NE where
agent 1 cuts at x∗, y∗, z∗, respectively, and chooses the piece
[x∗, y∗]. If x∗ > 0, then the agent can improve its utility
by making the first cut at x′ = 0 and choosing the piece
[x′, y∗], since V1([x

′, y∗]) > V1([x
∗, y∗]). Thus, x∗ = 0.

Moreover, it cannot be the case that y∗ = 1, since the agent
only receives an allocation if y∗ < z∗ ≤ 1. Thus, y∗ < 1.
Then, by making the second cut at any y′ ∈ (y∗, z∗), agent 1
can obtain the value V1([0, y

′]) > V1([0, y
∗]). It follows that

there is no exact NE where the agent chooses the first piece.
Similarly, it can be shown that there is no exact NE where
the agent chooses the second piece, [y∗, z∗]. This illustrates
why backward induction does not apply: the maximum value
at some Cut nodes may not be well defined.

3.1 Approximate SPNE

One possible way to circumvent the foregoing example is by
saying that agent 1 should be happy to make the cut y very
close to z. For instance, if the agent’s value is uniformly
distributed over the case, cutting at x = 0, y = 1− ε, z = 1
would allow the agent to choose the piece [x, y] with value
1− ε; and this is true for any ε.

More generally, we have the following theorem.

Theorem 1. For any n-agent GCC protocol P with
a bounded number of steps, any n valuation functions
V1, . . . , Vn, and any ε > 0, the game induced by P and
V1, . . . , Vn has an ε-SPNE.

The proof of Theorem 1 is relegated to the full version.3 In
a nutshell, the high-level idea of our proof relies on discretiz-
ing the cake — such that every cell in the resulting grid has
a very small value for each agent — and computing the opti-
mal outcome on the discretized cake using backward induc-
tion. At every cut step of the protocol, the grid is refined by
adding a point between every two consecutive points of the
grid from the previous cut step. This ensures that any order-
ing of the cut points that can be enforced by playing on the
continuous cake can also be enforced on the discretized in-
stance. Therefore, for the purpose of computing an approx-
imate SPNE, it is sufficient to work with the discretization.
We then show that the backward induction outcome from the
discrete game gives an ε-SPNE on the continuous cake.

3.2 Informed Tie-Breaking

Another approach for circumventing the example given at
the beginning of the section is to change the tie-breaking
rule of Algorithm 1, by letting agent 1 choose even if y = z
(in which case agent 1 would cut in x = 0, y = 1, z = 1, and
get the entire cake). Tie-breaking matters: even the Dubins-
Spanier protocol fails to guarantee SPNE existence due to a
curious tie-breaking issue (Brânzei and Miltersen 2013).

3Available from: http://procaccia.info/research.

To accommodate more powerful tie-breaking rules, we
slightly augment GCC protocols, by extending their ability
to compare cuts in case of a tie. Specifically, we can as-
sume without loss of generality that the If-Else statements
of a GCC protocol are specified only with weak inequali-
ties (as an equality can be specified with two inequalities
and a strong inequality via an equality and weak inequality),
which involve only pairs of cuts. We consider informed GCC
protocols, which are capable of using If-Else statements of
the form “if [x < y or (x = y and history of events ∈ H)]
then”. That is, when cuts are made in the same location and
cause a tie in an If-Else, the protocol can invoke the power
to check the entire history of events that have occurred so
far. We can recover the x < y and x ≤ y comparisons of
“uninformed” GCC protocols by setting H to be empty or
all possible histories, respectively. Importantly, the history
can include where cuts were made exactly, and not simply
where in relation to each other.

We say that an informed GCC protocol P ′ is equivalent
up to tie-breaking to a GCC protocol P if they are identical,
except that some inequalities in the If-Else statements of P
are replaced with informed inequalities in the corresponding
If-Else statements of P ′. That is, the two protocols are pos-
sibly different only in cases where two cuts are made at the
exact same point.

For example, in Algorithm 1, the statement “if x < y < z
then” can be specified as “if x < y then if y < z then”. We
can obtain an informed GCC protocol that is equivalent up to
tie-breaking by replacing this statement with “if x < y then
if y ≤ z then” (here we are not actually using augmented
tie-breaking). In this case, the modified protocol may feel
significantly different from the original — but this is an ar-
tifact of the extreme simplicity of Algorithm 1. Common
cake cutting protocols are more complex, and changing the
tie-breaking rule preserves the essence of the protocol.

We are now ready to present our second main result.

Theorem 2. For any n-agent GCC protocol P with a
bounded number of steps and any n valuation functions
V1, . . . , Vn, there exists an informed GCC protocol P ′ that
is equivalent to P up to tie-breaking, such that the game in-
duced by P ′ and V1, . . . , Vn has an SPNE.

Intuitively, we can view P ′ as being “undecided” when-
ever two cuts are made at the same point, that is, x = y:
it can adopt either the x < y branch or the x > y branch
— there exists an appropriate decision. The theorem tells
us that for any given valuation functions, we can set these
tie-breaking points in a way that guarantees the existence of
an SPNE. In this sense, the tie-breaking of the protocol is
informed by the given valuation functions. Indeed, this in-
terpretation is plausible as we are dealing with a game of
perfect information.

The proof of Theorem 2 is somewhat long, and has been
relegated to the full version. This proof is completely dif-
ferent from the proof of Theorem 1; in particular, it relies
on real analysis instead of backward induction on a dis-
cretized space. The crux of the proof is the development
of an auxiliary notion of mediated games (not to be con-
fused with Monderer and Tennenholtz’s mediated equilib-
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rium (Monderer and Tennenholtz 2009)) that may be of in-
dependent interest. We show that mediated games always
have an SPNE. The actions of the mediator in this SPNE
are then reinterpreted as a tie-breaking rule under an in-
formed GCC protocol. In the context of the proof it is worth
noting that some papers prove the existence of SPNE in
games with infinite action spaces (see, e.g., (Harris 1985;
Hellwig and Leininger 1987)), but our game does not satisfy
the assumptions required therein.

4 Fair Equilibria

The existence of equilibria (Theorems 1 and 2) gives us a
tool for predicting the strategic outcomes of cake cutting
protocols. In particular, classic protocols provide fairness
guarantees when agents act honestly; but do they provide
any fairness guarantees in equilibrium?

We first make a simple yet crucial observation. In a pro-
portional protocol, every agent is guaranteed a value of at
least 1/n regardless of what the others are doing. Therefore,
in every NE (if any) of the protocol, the agent still receives
a piece worth at least 1/n; otherwise it can deviate to the
strategy that guarantees it a utility of 1/n and do better.
Similarly, an ε-NE must be ε-proportional, i.e., each agent
must receive a piece worth at least 1/n − ε. Hence, classic
protocols such as Dubins-Spanier, Even-Paz, and Selfridge-
Conway guarantee (approximately) proportional outcomes
in any (approximate) NE (and of course this observation car-
ries over to the stronger notion of SPNE).

One may wonder, though, whether the analogous state-
ment for envy-freeness holds; the answer is negative. We
demonstrate this via the Selfridge-Conway protocol — a 3-
agent envy-free protocol, which is given in its truthful, non-
GCC form as Algorithm 3. To see why the protocol is envy
free, note that the division of three pieces in steps 4, 5, and
6 is trivially envy free. For the division of the trimmings in
step 9, agent i is not envious because it chooses first, and
agent j is not envious because it was the one that cut the
pieces (presumably, equally according to its value). In con-
trast, agent 1 may prefer the piece of trimmings that agent i
received in step 9, but overall agent 1 cannot envy i, because
at best i was able to “reconstruct” one of the three original
pieces that was trimmed at step 2, which agent 1 values as
much as the untrimmed piece it received in step 6.

We construct an example by specifying the valuation
functions of the agents and their strategies, and arguing that
the strategies are in SPNE. The example will have the prop-
erty that the first two agents receive utilities of 1 (i.e. the
maximum value). Therefore, we can safely assume their play
is in equilibrium; this will allow us to define the strategies
only on a small part of the game tree. In contrast, agent 3
will deviate from its truthful strategy to gain utility, but in
doing so will become envious of agent 1.

In more detail, suppose after agent 2 trims the three pieces
we have the following.

• Agent 1 values the first untrimmed piece at 1, and all other
pieces and the trimmings at 0.

• Agent 2 values the second untrimmed piece at 1, and all
other pieces and the trimmings at 0.

1: Agent 1 cuts the cake into three equal parts in the agent’s
value.

2: Agent 2 trims the most valuable of the three pieces such
that there is a tie with the two most valuable pieces.

3: Set aside the trimmings.
4: Agent 3 chooses one of the three pieces to keep.
5: Agent 2 chooses one of the remaining two pieces to keep

— with the stipulation that if the trimmed piece is not
taken by agent 3, agent 2 must take it.

6: Agent 1 takes the remaining piece.
7: Denote by i ∈ {2, 3} the agent which received the

trimmed piece, and j = {2, 3} \ {i}.
8: Agent j now cuts the trimmings into three equal parts in

the agent’s value.
9: Agents i, 1, and j choose one of the three pieces to keep

in that order.
Algorithm 3: Selfridge-Conway: an envy-free protocol for
three agents.

• Agent 3 values the untrimmed pieces at 1/7 and 0, the
trimmed piece at 1/14, and the trimmings at 11/14.

Now further suppose that if agent 3 is to cut the trimmings
(i.e. take on the role of j in the protocol), then the first two
agents always take the pieces most valuable to agent 3. Thus,
if agent 3 does not take the trimmed piece it will achieve a
utility of at most 1/7 + (11/14)(1/3) = 119/294 by taking
the first untrimmed piece, and then cutting the trimmings
into three equal parts. On the other hand, if agent 3 takes the
trimmed piece of worth 1/14, agent 2 cuts the trimmings
into three parts such that one of the pieces is worth 0 to
agent 3, and the other two are equivalent in value (i.e. they
have values (11/14)(1/2) = 11/28). Agents 1 and 3 take
these two pieces. Thus, in this scenario, agent 3 receives a
utility of 1/14 + 11/28 = 13/28 which is strictly better
than the utility of 119/294. Agent 3 will therefore choose
to take the trimmed piece. However, in this outcome agent
1, from the point of view of agent 3, receives a piece worth
1/7+11/28 = 15/28 and so agent 3 will indeed be envious.

The foregoing example shows that envy-freeness is not
guaranteed when agents strategize, and so it is difficult to
produce envy-free allocations when agents play to maximize
their utility. A natural question to ask, therefore, is whether
there are any GCC protocols such that all SPNE are envy-
free, and existence of SPNE is guaranteed. This remains an
open question, but we do give an affirmative answer for the
weaker solution concept of NE in the following theorem,
whose proof appears in the full version of the paper.
Theorem 3. There exists a GCC protocol P such that on
every cake cutting instance with strictly positive valuation
functions V1, . . . , Vn, an allocation X is the outcome of a
NE of the game induced by P and V1, . . . , Vn if and only
if X is an envy-free contiguous allocation that contains the
entire cake.

Crucially, an envy-free contiguous allocation is guaran-
teed to exist (Stromquist 1980), hence the set of NE of pro-
tocol P is nonempty.

Theorem 3 is a positive result à la implementation theory
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(see, e.g., (Maskin 1999)), which aims to construct games
where the NE outcomes coincide with a given specifica-
tion of acceptable outcomes for each constellation of agents’
preferences (known as a social choice correspondence). Our
construction guarantees that the NE outcomes coincide with
(contiguous) envy-free allocations, i.e. in this case the envy-
freeness criterion specifies which outcomes are acceptable.

That said, the protocol P constructed in the proof of Theo-
rem 3 is impractical: its Nash equilibria are unlikely to arise
in practice. This further motivates efforts to find an analo-
gous result for SPNE. If such a result is indeed feasible, a
broader, challenging open question would be to character-
ize GCC protocols that give rise to envy-free SPNE, or at
least provide a sufficient condition (on the protocol) for the
existence of such equilibria.
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