
Artificial Intelligence 231 (2016) 1–16
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Voting rules as error-correcting codes ✩

Ariel D. Procaccia, Nisarg Shah ∗, Yair Zick

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 January 2015
Received in revised form 13 October 2015
Accepted 20 October 2015
Available online 27 October 2015

Keywords:
Social choice
Voting
Ground truth
Adversarial noise
Error-correcting codes

We present the first model of optimal voting under adversarial noise. From this viewpoint, 
voting rules are seen as error-correcting codes: their goal is to correct errors in the input 
rankings and recover a ranking that is close to the ground truth. We derive worst-case 
bounds on the relation between the average accuracy of the input votes, and the accuracy 
of the output ranking. Empirical results from real data show that our approach produces 
significantly more accurate rankings than alternative approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Social choice theory develops and analyzes methods for aggregating the opinions of individuals into a collective decision. 
The prevalent approach is motivated by situations in which opinions are subjective, such as political elections, and focuses 
on the design of voting rules that satisfy normative properties [1].

An alternative approach, which was proposed by the marquis de Condorcet in the 18th Century, had confounded schol-
ars for centuries (due to Condorcet’s ambiguous writing) until it was finally elucidated by Young [34]. The underlying 
assumption is that the alternatives can be objectively compared according to their true quality. In particular, it is typically 
assumed that there is a ground truth ranking of the alternatives. Votes can be seen as noisy estimates of the ground truth, 
drawn from a specific noise model. For example, Condorcet proposed a noise model where — roughly speaking — each voter 
(hereinafter, agent) compares every pair of alternatives, and orders them correctly (according to the ground truth) with 
probability p > 1/2; today an equivalent model is attributed to Mallows [26]. Here, it is natural to employ a voting rule that 
always returns a ranking that is most likely to coincide with the ground truth, that is, the voting rule should be a maximum 
likelihood estimator (MLE).

Although Condorcet could have hardly foreseen this, his MLE approach is eminently applicable to crowdsourcing and 
human computation systems, which often employ voting to aggregate noisy estimates; EteRNA [24] is a wonderful example, 
as explained by Procaccia et al. [30]. Consequently, the study of voting rules as MLEs has been gaining steam in the last 
decade [16,15,19,33,32,25,30,2–4,27,12,13].

Despite its conceptual appeal, a major shortcoming of the MLE approach is that the MLE voting rule is specific to a 
noise model, and that noise model — even if it exists for a given setting — may be difficult to pin down [27]. Caragiannis 
et al. [12,13] have addressed this problem by relaxing the MLE constraint: they only ask that the probability of the voting 
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rule returning the ground truth go to one as the number of votes goes to infinity. This allows them to design voting rules 
that uncover the ground truth in a wide range of noise models; however, they may potentially require an infinite amount 
of information.

Our approach. In this paper, we propose a fundamentally different approach to aggregating noisy votes. Instead of assuming 
probabilistic noise, we assume a known upper bound on the “total noise” in the input votes, and allow the input votes to 
be adversarial subject to the upper bound. We emphasize that in potential application domains there is no adversary that 
actively inserts errors into the votes; we choose an adversarial error model to be able to correct errors even in the worst 
case. This style of worst-case analysis — where the worst case is assumed to be generated by an adversary — is prevalent in 
many branches of computer science, e.g., in the analysis of online algorithms [10], and in machine learning [23,9].

We wish to design voting rules that do well in this worst-case scenario. From this viewpoint, our approach is closely 
related to the extensive literature on error-correcting codes. One can think of the votes as a repetition code: each vote is a 
transmitted noisy version of a “message” (the ground truth). The task of the “decoder” is to correct adversarial noise and 
recover the ground truth, given an upper bound on the total error. The question is: how much total error can this “code” 
allow while still being able to recover the ground truth?

In more detail, let d be a distance metric on the space of rankings. As an example, the well-known Kendall tau (KT)
distance between two rankings measures the number of pairs of alternatives on which the two rankings disagree. Suppose 
that we receive n votes over the set of alternatives {a, b, c, d}, for an even n, and we know that the average KT distance 
between the votes and the ground truth is at most 1/2. Can we always recover the ground truth? No: in the worst-case, 
exactly n/2 agents swap the two highest-ranked alternatives and the rest report the ground truth. In this case, we observe 
two distinct rankings (each n/2 times) that only disagree on the order of the top two alternatives. Both rankings have an 
average distance of 1/2 from the input votes, making it impossible to determine which of them is the ground truth.

Let us, therefore, cast a larger net. Inspired by list decoding of error-correcting codes (see, e.g., [20]), our main research 
question is:

Fix a distance metric d. Suppose that we are given n noisy rankings, and that the average distance between these rankings and the 
ground truth is at most t. We wish to recover a ranking that is guaranteed to be at distance at most k from the ground truth. How 
small can k be, as a function of n and t?

Our results. We observe that for any metric d, one can always recover a ranking that is at distance at most 2t from the 
ground truth, i.e., k ≤ 2t . We also show that one can pick, in polynomial time, a ranking from the given noisy rankings that 
provides a weaker 3t upper bound. We complement the upper bounds by providing a lower bound of (roughly) k ≥ t/2
that holds for every distance metric. We also show that an extremely mild assumption on the distance metric improves the 
lower bound to (roughly) k ≥ t . In addition, we consider the four most popular distance metrics used in the social choice 
literature, and prove a tight lower bound of (roughly) k ≥ 2t for each metric. This lower bound is our main theoretical 
result; the construction makes unexpected use of Fermat’s Polygonal Number Theorem.

The worst-case optimal voting rule in our framework is defined with respect to a known upper bound t on the average 
distance between the given rankings and the ground truth. However, we show that the voting rule which returns the ranking 
minimizing the total distance from the given rankings — which has strong theoretical support in the literature — serves as 
an approximation to our worst-case optimal rule, irrespective of the value of t . We leverage this observation to provide 
theoretical performance guarantees for our rule in cases where the error bound t given to the rule is an underestimate or 
overestimate of the tightest upper bound.

Finally, we test our worst-case optimal voting rules against many well-known voting rules, on two real-world 
datasets [27], and show that the worst-case optimal rules exhibit superior performance as long as the given error bound t
is a reasonable overestimate of the tightest upper bound.

Related work. Our work is related to the extensive literature on error-correcting codes that use permutations (see, e.g., [5], 
and the references therein), but differs in one crucial aspect. In designing error-correcting codes, the focus is on two choices: 
i) the codewords, a subset of rankings which represent the “possible ground truths”, and ii) the code, which converts every 
codeword into the message to be sent. These choices are optimized to achieve the best tradeoff between the number of 
errors corrected and the rate of the code (efficiency), while allowing unique identification of the ground truth. In contrast, 
our setting has fixed choices: i) every ranking is a possible ground truth, and ii) in coding theory terms, our setting con-
strains us to the repetition code. Both restrictions (inevitable in our setting) lead to significant inefficiencies, as well as 
the impossibility of unique identification of the ground truth (as illustrated in the introduction). Our research question is 
reminiscent of coding theory settings where a bound on adversarial noise is given, and a code is chosen with the bound on 
the noise as an input to maximize efficiency (see, e.g., [21]).

List decoding (see, e.g., [20]) relaxes classic error correction by guaranteeing that the number of possible messages does 
not exceed a small quota; then, the decoder simply lists all possible messages. The motivation is that one can simply scan 
the list and find the correct message, as all other messages on the list are likely to be gibberish. In the voting context, one 
cannot simply disregard some potential ground truths as nonsensical; we therefore select a ranking that is close to every 
possible ground truth.
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Our model is also reminiscent of the distance rationalizability framework from the social choice literature [28]. In this 
framework, there is a fixed set of “consensus profiles” that admit an obvious output. Given a profile of votes, one finds 
the closest consensus profile (according to some metric), and returns the obvious output for that profile. Our model closely 
resembles the case where the consensus profiles are strongly unanimous, i.e., they consist of repetitions of a single ranking 
(which is also the ideal output). The key difference in our model is that instead of focusing solely on the closest ranking 
(strongly unanimous profile), we need to consider all rankings up to an average distance of t from the given profile — as 
they are all plausible ground truths — and return a single ranking that is at distance at most k from all such rankings.

A bit further afield, Procaccia et al. [31] study a probabilistic noisy voting setting, and quantify the robustness of voting 
rules to random errors. Their results focus on the probability that the outcome would change, under a random transposition 
of two adjacent alternatives in a single vote from a submitted profile, in the worst-case over profiles. Their work is different 
from ours in many ways, but perhaps most importantly, they are interested in how frequently common voting rules make 
mistakes, whereas we are interested in the guarantees of optimal voting rules that avoid mistakes.

2. Preliminaries

Let A be the set of alternatives, and |A| = m. Let L(A) be the set of rankings over A. A vote σ is a ranking in L(A), and 
a profile π ∈L(A)n is a collection of n rankings. A voting rule f :L(A)n →L(A) maps every profile to a ranking.1

We assume that there exists an underlying ground truth ranking σ ∗ ∈ L(A) of the alternatives, and the votes are noisy 
estimates of σ ∗ . We use a distance metric d over L(A) to measure errors; the error of a vote σ with respect to σ ∗ is 
d(σ , σ ∗), and the average error of a profile π with respect to σ ∗ is d(π, σ ∗) = (1/n) · ∑

σ∈π d(σ , σ ∗). We consider four 
popular distance metrics over rankings in this paper.

• The Kendall tau (KT) distance, denoted dKT , measures the number of pairs of alternatives over which two rankings disagree. 
Equivalently, it is also the minimum number of swaps of adjacent alternatives required to convert one ranking into 
another.

• The (Spearman’s) Footrule (FR) distance, denoted dFR , measures the total displacement of all alternatives between two 
rankings, i.e., the sum of the absolute differences between their positions in two rankings.

• The Maximum Displacement (MD) distance, denoted dMD , measures the maximum of the displacements of all alternatives 
between two rankings.

• The Cayley (CY) distance, denoted dCY , measures the minimum number of swaps (not necessarily of adjacent alternatives) 
required to convert one ranking into another.

All four metrics described above are neutral: A distance metric is called neutral if the distance between two rankings is 
independent of the labels of the alternatives; in other words, choosing a relabeling of the alternatives and applying it to 
two rankings keeps the distance between them invariant.

3. Worst-case optimal rules

Suppose we are given a profile π of n noisy rankings that are estimates of an underlying true ranking σ ∗ . In the 
absence of any additional information, any ranking could potentially be the true ranking. However, because essentially all 
crowdsourcing methods draw their power from the often-observed fact that individual opinions are accurate on average, we 
can plausibly assume that while some agents may make many mistakes, the average error is fairly small. An upper bound 
on the average error may be inferred by observing the collected votes, or from historical data (but see the next section for 
the case where this bound is inaccurate).

Formally, suppose we are guaranteed that the average distance between the votes in π and the ground truth σ ∗ is at 
most t according to a metric d, i.e., d(π, σ ∗) ≤ t . With this guarantee, the set of possible ground truths is given by the “ball” 
of radius t around π .

Bd
t (π) = {σ ∈ L(A) | d(π,σ ) ≤ t}.

Note that we have σ ∗ ∈ Bd
t (π) given our assumption; hence, Bd

t (π) �= ∅. We wish to find a ranking that is as close to 
the ground truth as possible. Since our approach is worst case in nature, our goal is to find the ranking that minimizes 
the maximum distance from the possible ground truths in Bd

t (π). For a set of rankings S ⊆ L(A), let its minimax ranking, 
denoted MiniMax

d(S), be defined as follows.2

MiniMax
d(S) = arg min

σ∈L(A)

max
σ ′∈S

d(σ ,σ ′).

1 They are known as social welfare functions, which differ from social choice functions that choose a single winning alternative.
2 We use MiniMax

d(S) to denote a single ranking. Ties among multiple minimizers can be broken arbitrarily; our results are independent of the tie-
breaking scheme.
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Table 1
Application of the optimal voting rules on π .

Voting rule Possible ground truths Bd
t (π) Output ranking

OPT
dKT (1.5,π),

OPT
dCY (1,π)

{ a � b � c,
a � c � b,

b � a � c

}
a � b � c

OPT
dFR (2,π),

OPT
dMD (1,π)

{ a � b � c,
a � c � b

} { a � b � c,
a � c � b

}

Let the minimax distance of S , denoted kd(S), be the maximum distance of MiniMax
d(S) from the rankings in S according 

to d. Thus, given a profile π and the guarantee that d(π, σ ∗) ≤ t , the worst-case optimal voting rule OPT
d returns the 

minimax ranking of the set of possible ground truths Bd
t (π). That is, for all profiles π ∈L(A)n and t > 0,

OPT
d(t,π) = MiniMax

d
(
Bd

t (π)
)

.

Furthermore, the output ranking is guaranteed to be at distance at most kd(Bd
t (π)) from the ground truth. We overload 

notation, and denote kd(t, π) = kd(Bd
t (π)), and

kd(t) = max
π∈L(A)n

kd(t,π).

While kd is explicitly a function of t , it is also implicitly a function of n. Hereinafter, we omit the superscript d whenever 
the metric is clear from context. Let us illustrate our terminology with a simple example.

Example 1. Let A = {a, b, c}. We are given profile π consisting of 5 votes: π = {2 × (a � b � c), a � c � b, b � a � c,
c � a � b}.

The maximum distances between rankings in L(A) allowed by dKT , dFR , dMD , and dCY are 3, 4, 2, and 2, respectively; let 
us assume that the average error limit is half the maximum distance for all four metrics.3

Consider the Kendall tau distance with t = 1.5. The average distances of all 6 rankings from π are given below.

dKT(π,a � b � c) = 0.8 dKT(π,a � c � b) = 1.0
dKT(π,b � a � c) = 1.4 dKT(π,b � c � a) = 2.0
dKT(π, c � a � b) = 1.6 dKT(π, c � b � a) = 2.2

Thus, the set of possible ground truths is BdKT
1.5 (π) = {a � b � c, a � c � b, b � a � c}. This set has a unique minimax 

ranking OPT
dKT (1.5, π) = a � b � c, which gives kdKT (1.5, π) = 1. Table 1 lists the sets of possible ground truths and their 

minimax rankings4 under different distance metrics.
Note that even with identical (scaled) error bounds, different distance metrics lead to different sets of possible ground 

truths as well as different optimal rankings. This demonstrates that the choice of the distance metric is important.

3.1. Upper bound

Given a distance metric d, a profile π , and that d(π, σ ∗) ≤ t , we can bound k(t, π) using the diameter of the set of 
possible ground truths Bt(π). For a set of rankings S ⊆L(A), denote its diameter by D(S) = maxσ ,σ ′∈S d(σ , σ ′).

Lemma 1. 1
2 ·D(Bt(π)) ≤ k(t, π) ≤D(Bt(π)) ≤ 2t.

Proof. Let σ̂ = MiniMax(Bt(π)). For rankings σ , σ ′ ∈ Bt(π), we have d(σ , ̂σ), d(σ ′, ̂σ) ≤ k(t, π) by definition of σ̂ . By the 
triangle inequality, d(σ , σ ′) ≤ 2k(t, π) for all σ , σ ′ ∈ Bt(π). Thus, D(Bt(π)) ≤ 2k(t, π).

Next, the maximum distance of σ ∈ Bt(π) from all rankings in Bt(π) is at most D(Bt(π)). Hence, the minimax distance 
k(t, π) = k(Bt(π)) cannot be greater than D(Bt(π)).

Finally, let π = {σ1, . . . , σn}. For rankings σ , σ ′ ∈ Bt(π), the triangle inequality implies d(σ , σ ′) ≤ d(σ , σi) + d(σi, σ ′)
for every i ∈ {1, . . . , n}. Averaging over these inequalities, we get d(σ , σ ′) ≤ t + t = 2t , for all σ , σ ′ ∈ Bt(π). Thus, we have 
D(Bt(π)) ≤ 2t , as required. �

Lemma 1 implies that k(t) = maxπ∈L(A)n k(t, π) ≤ 2t for all distance metrics and t > 0. In words:

3 Scaling by the maximum distance is not a good way of comparing distance metrics; we do so for the sake of illustration only.
4 Multiple rankings indicate a tie that can be broken arbitrarily.
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Theorem 1. Given n noisy rankings at an average distance of at most t from an unknown true ranking σ ∗ according to a distance 
metric d, it is always possible to find a ranking at distance at most 2t from σ ∗ according to d.

Importantly, the bound of Theorem 1 is independent of the number of votes n. Most statistical models of social choice 
restrict profiles in two ways: i) the average error should be low because the probability of generating high-error votes is 
typically low, and ii) the errors should be distributed almost evenly (in different directions from the ground truth), which 
is why aggregating the votes works well. These assumptions are mainly helpful when n is large, that is, performance may 
be poor for small n (see, e.g., [12]). In contrast, our model restricts profiles only by making the first assumption (explicitly), 
allowing voting rules to perform well as long as the votes are accurate on average, independently of the number of votes n.

We also remark that Theorem 1 admits a simple proof, but the bound is nontrivial: while the average error of the profile 
is at most t (hence, the profile contains a ranking with error at most t), it is generally impossible to pinpoint a single 
ranking within the profile that has error at most 2t with respect to the ground truth in the worst-case (i.e., with respect to 
every possible ground truth in Bt(π)). That said, it can be shown that there exists a ranking in the profile that always has 
distance at most 3t from the ground truth. Further, one can pick such a ranking in polynomial time, which stands in sharp 
contrast to the usual hardness of finding the optimal ranking (see the discussion on the computational complexity of our 
approach in Section 6).

Theorem 2. Given n noisy rankings at an average distance of at most t from an unknown true ranking σ ∗ according to a distance 
metric d, it is always possible to pick, in polynomial time, one of the n given rankings that has distance at most 3t from σ ∗ according 
to d.

Proof. Consider a profile π consisting of n rankings such that d(σ ∗, π) ≤ t . Let x = minσ∈L(A) d(σ , π) be the minimum 
distance any ranking has from the profile. Then, x ≤ d(σ ∗, π) ≤ t . Let σ̂ = arg minσ∈π d(σ , π) be the ranking in π which 
minimizes the distance from π among all rankings in π . An easy-to-verify folklore theorem says that d(σ̂ , π) ≤ 2x. To see 
this, assume that ranking τ has the minimum distance from the profile (i.e., d(τ , π) = x). Now, the average distance of all 
rankings in π from π is

1

n

∑
σ∈π

d(σ ,π) = 1

n2

∑
σ∈π

∑
σ ′∈π

d(σ ,σ ′) ≤ 1

n2

∑
σ∈π

∑
σ ′∈π

(d(τ ,σ ) + d(τ ,σ ′))

= 2

n

∑
σ∈π

d(τ ,σ ) = 2x ≤ 2t,

where the second transition uses the triangle inequality. Now, σ̂ has the smallest distance from π among all rankings in π , 
which cannot be greater than the average distance (1/n) 

∑
σ∈π d(σ , π). Hence, d(σ̂ , π) ≤ 2t . Finally,

d(σ̂ ,σ ∗) ≤ 1

n

∑
σ∈π

(
d(σ̂ ,σ ) + d(σ ,σ ∗)

) ≤ 2t + t = 3t,

where the first transition uses the triangle inequality and the second transition uses the fact that d(σ̂ , π) ≤ 2t and 
d(π, σ ∗) ≤ t . It is easy to see that σ̂ can be computed in O (n2) time. �
3.2. Lower bounds

The upper bound of 2t (Theorem 1) is intuitively loose — we cannot expect it to be tight for every distance metric. 
However, we can complement it with a lower bound of (roughly speaking) t/2 for all distance metrics. Formally, let d↓(r)
denote the greatest feasible distance under distance metric d that is less than or equal to r. Next, we prove a lower bound 
of d↓(t)/2.

Theorem 3. For a distance metric d, k(t) ≥ d↓(t)/2.

Proof. If d↓(t) = 0, then the result trivially holds. Assume d↓(t) > 0. Let σ and σ ′ be two rankings at distance d↓(t). 
Consider profile π consisting of only a single instance of ranking σ . Then, σ ′ ∈ Bt(π). Hence, D(Bt(π)) ≥ d↓(t). Now, it 
follows from Lemma 1 that k(t) ≥ D(Bt(π))/2 ≥ d↓(t)/2. �

Recall that Theorem 1 shows that k(t) ≤ 2t . However, k(t) is the minimax distance under some profile, and hence must 
be a feasible distance under d. Thus, Theorem 1 actually implies a possibly better upper bound of d↓(2t). Together with 
Theorem 3, this implies d↓(t)/2 ≤ k(t) ≤ d↓(2t). Next, we show that imposing a mild assumption on the distance metric 
allows us to improve the lower bound by a factor of 2, thus reducing the gap between the lower and upper bounds.

Theorem 4. For a neutral distance metric d, k(t) ≥ d↓(t).
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Proof. For a ranking σ ∈ L(A) and r ≥ 0, let Br(σ ) denote the set of rankings at distance at most r from σ . Neutrality of 
the distance metric d implies |Br(σ )| = |Br(σ

′)| for all σ , σ ′ ∈ L(A) and r ≥ 0. In particular, d↓(t) being a feasible distance 
under d implies that for every σ ∈L(A), there exists some ranking at distance exactly d↓(t) from σ .

Fix σ ∈ L(A). Consider the profile π consisting of n instances of σ . It holds that Bt(π) = Bt(σ ). We want to show that 
the minimax distance k(Bt(σ )) ≥ d↓(t). Suppose for contradiction that there exists some σ ′ ∈L(A) such that all rankings in 
Bt(σ ) are at distance at most t′ from σ ′ , i.e., Bt(σ ) ⊆ Bt′ (σ ′), with t′ < d↓(t). Since there exists some ranking at distance 
d↓(t) > t′ from σ ′ , we have Bt(σ ) ⊆ Bt′(σ ′) � Bt(σ

′), which is a contradiction because |Bt(σ )| = |Bt(σ
′)|. Therefore, k(t) ≥

k(t, π) ≥ d↓(t). �
The bound of Theorem 4 holds for all n, m > 0 and all t ∈ [0, D], where D is the maximum possible distance under d. It 

can be checked easily that the bound is tight given the neutrality assumption, which is an extremely mild — and in fact, a 
highly desirable — assumption for distance metrics over rankings.

Theorem 4 improves the bounds on k(t) to d↓(t) ≤ k(t) ≤ d↓(2t) for a variety of distance metrics d. However, for the four 
special distance metrics considered in this paper, the next result, which is our main theoretical result, closes this gap by 
establishing a tight lower bound of d↓(2t), for a wide range of values of n and t .

Theorem 5. If d ∈ {dKT , dFR, dMD, dCY}, and the maximum distance allowed by the metric is D ∈ �(mα), then there exists T ∈ �(mα)

such that:

1. For all t ≤ T and even n, we have k(t) ≥ d↓(2t).
2. For all L ≥ 2, t ≤ T with {2t} ∈ (1/L, 1 − 1/L), and odd n ≥ �(L · D), we have k(t) ≥ d↓(2t). Here, {x} = x − 
x� denotes the 

fractional part of x ∈R.

The impossibility result of Theorem 5 is weaker for odd values of n (in particular, covering more values of t requires 
larger n), which is reminiscent of the fact that repetition (error-correcting) codes achieve greater efficiency with an odd 
number of repetitions; this is not merely a coincidence. Indeed, an extra repetition allows differentiating between tied 
possibilities for the ground truth; likewise, an extra vote in the profile prevents us from constructing a symmetric profile 
that admits a diverse set of possible ground truths.

Proof of Theorem 5. We denote {1, . . . , r} by [r] in this proof. We use σ(a) to denote the rank (position) of alternative a in 
ranking σ . First, we prove the case of even n for all four distance metrics. We later provide a generic argument to prove the 
case of large odd n. First, we need a simple observation.

Observation 1. If 
(r

2

) ≤ 
2t� and t ≥ 0.5, then r ≤ 4
√

t.

Proof. Note that (r − 1)2 ≤ r · (r − 1) ≤ 2 · 
2t� ≤ 4t . Hence, r ≤ 2
√

t + 1. We also have t ≥ 0.5, i.e., 1 ≤ 2t . This implies 
1 ≤ √

2t . Thus, we have r ≤ 2
√

t + √
2t = (2 + √

2)
√

t ≤ 4
√

t . �
The Kendall tau distance: Let d be the Kendall tau distance; thus, D = (m

2

)
and α = 2. Let n be even. For a ranking τ ∈L(A), 

let τrev be its reverse. Assume t = (1/2) · (m
2

)
, and fix a ranking σ ∈ L(A). Every ranking must agree with exactly one of σ

and σrev on a given pair of alternatives. Hence, every ρ ∈ L(A) satisfies d(ρ, σ) + d(ρ, σrev) =
(m

2

)
. Consider the profile π

consisting of n/2 instances of σ and n/2 instances of σrev. Then, the average distance of every ranking from rankings in π
would be exactly t , i.e., Bt(π) = L(A). It is easy to check that k(L(A)) = (m

2

) = 2t = d↓(2t) because every ranking has its 
reverse ranking in L(A) at distance exactly 2t .

Now, let us extend the proof to t ≤ (m/12)2. If t < 0.5, then d↓
KT(2t) = 0, which is a trivial lower bound. Hence, assume 

t ≥ 0.5. Thus, d↓(2t) = 
2t�. We use Fermat’s Polygonal Number Theorem (see, e.g., [22]). A special case of this remarkable 
theorem states that every natural number can be expressed as the sum of at most three “triangular” numbers, i.e., numbers 
of the form 

(k
2

)
. Let 
2t� = ∑3

i=1

(mi
2

)
. From Observation 1, it follows that 0 ≤ mi ≤ 4

√
t for all i ∈ {1, 2, 3}. Hence, 

∑3
i=1 mi ≤

12
√

t ≤ m.
Partition the set of alternatives A into four disjoint groups A1, A2, A3, and A4 such that |Ai | = mi for i ∈ {1, 2, 3}, and 

|A4| = m − ∑3
i=1 mi . Let σ A4 be an arbitrary ranking of the alternatives in A4; consider the partial order PA = A1 � A2 �

A3 � σ A4 over alternatives in A. Note that a ranking ρ is an extension of PA iff it ranks all alternatives in Ai before 
any alternative in Ai+1 for i ∈ {1, 2, 3}, and ranks alternatives in A4 according to σ A4 . Choose arbitrary σ Ai ∈ L(Ai) for 
i ∈ {1, 2, 3} and define

σ = σ A1 � σ A2 � σ A3 � σ A4 ,

σ ′ = σ
A1

rev � σ
A2

rev � σ
A3

rev � σ A4 .
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Note that both σ and σ ′ are extensions of PA . Once again, take the profile π consisting of n/2 instances of σ and n/2
instances of σ ′ . It is easy to check that a ranking disagrees with exactly one of σ and σ ′ on every pair of alternatives that 
belong to the same group in {A1, A2, A3}. Hence, every ranking ρ ∈L(A) satisfies

d(ρ,σ ) + d(ρ,σ ′) ≥
3∑

i=1

(
mi

2

)
= 
2t� . (1)

Clearly an equality is achieved in Equation (1) if and only if ρ is an extension of PA . Thus, every extension of PA has 
an average distance of 
2t�/2 ≤ t from π . Every ranking ρ that is not an extension of PA achieves a strict inequality in 
Equation (1); thus, d(ρ, π) ≥ (
2t� + 1)/2 > t . Hence, Bt(π) is the set of extensions of PA .

Given a ranking ρ ∈ L(A), consider the ranking in Bt(π) that reverses the partial orders over A1, A2, and A3 induced 
by ρ . The distance of this ranking from ρ would be at least 

∑3
i=1

(mi
2

) = 
2t�, implying k(Bt(π)) ≥ 
2t�. (In fact, it can be 
checked that k(Bt(π)) = D(Bt(π)) = 
2t�.)

We now proceed to prove the case of an even number of agents for the other three distance metrics. First, if M is the 
minimum distance between two distinct rankings under a distance metric d and t < M/2, then we have d↓(2t) = 0, which 
is a trivial lower bound. Hence, we assume t ≥ M/2.

The footrule distance: Let dFR denote the footrule distance; recall that given σ , σ ′ ∈L(A), dFR(σ , σ ′) = ∑
a∈A |σ(a) −σ ′(a)|. 

The proof is along the same lines as the proof for the Kendall tau distance, but uses a few additional clever ideas. It is 
known that the maximum footrule distance between two rankings over m alternatives is D = ⌊

m2/2
⌋

, and is achieved by 
two rankings that are reverse of each other [17]. Hence, we have α = 2; thus, we wish to find T ∈ �(m2) for which the 
claim will hold. Formally writing the distance between a ranking and its reverse, we get

dFR(σ ,σrev) =
m∑

i=1

|m + 1 − 2i| =
⌊

m2

2

⌋
. (2)

Observation 2. The footrule distance between two rankings is always an even integer.

Proof. Take rankings σ , τ ∈ L(A). Note that dFR(σ , τ ) = ∑
a∈A |σ(a) − τ (a)|. Now, |σ(a) − τ (a)| is odd if and only if the 

positions of a in σ and τ have different parity. Since the number of odd (as well as even) positions is identical in σ and τ , 
the number of alternatives that leave an even position in σ to go to an odd position in τ equals the number of alternatives 
that leave an odd position in σ to go to an even position in τ . Thus, the number of alternatives for which the parity of the 
position changes is even. Equivalently, the number of odd terms in the sum defining the footrule distance is even. Hence, 
the footrule distance is an even integer. �

Hence, Equation (2) implies that d↓
FR(2t) equals 
2t� if 
2t� is even, and equals 
2t� − 1 otherwise. Let r = d↓

FR(2t). 
Hence, r is an even integer. We prove the result for t ≤ (m/8)2. In this case, we invoke the 4-gonal special case of Fermat’s 
Polygonal Number Theorem (instead of the 3-gonal case invoked in the proof for the Kendall tau distance): Every positive 
integer can be written as the sum of at most four squares. Let r/2 = m2

1 + m2
2 + m2

3 + m2
4. Hence,

r = (2m1)
2

2
+ (2m2)

2

2
+ (2m3)

2

2
+ (2m4)

2

2
. (3)

It is easy to check that mi ≤ √
r/2 for i ∈ [4]. Thus, 

∑4
i=1 2mi ≤ 8

√
r/2 ≤ 8

√
t ≤ m. Let us partition the set of alternatives 

A into {Ai}i∈[5] such that |Ai | = 2mi for i ∈ [4] and |A5| = m5 = m − ∑4
i=1 2mi .

Fix σ A5 ∈L(A5) and consider the partial order PA = A1 � A2 � A3 � A4 � σ A5 . Choose arbitrary σ Ai ∈L(Ai) for i ∈ [4], 
and let

σ = (σ A1 � σ A2 � σ A3 � σ A4 � σ A5),

σ ′ = (σ
A1

rev � σ
A2

rev � σ
A3

rev � σ
A4

rev � σ A5).

Note that both σ and σ ′ are extensions of PA . Consider the profile π consisting of n/2 instances of σ and σ ′ each. Unlike 
the Kendall tau distance, Bt(π) is not the set of extensions of PA . Still, we show that it satisfies k(Bt(π)) = D(Bt(π)) =
d↓

FR(2t) = r.

Denote by a j
i the alternative ranked j in σ Ai . Take a ranking ρ ∈ L(A). Consider dFR(ρ, σ) + dFR(ρ, σ ′). We have the 

following inequalities regarding the sum of displacement of different alternatives between ρ and σ , and between ρ and σ ′ . 
For i ∈ [4] and j ∈ [2mi],∣∣∣ρ(a j

i ) − σ(a j
i )

∣∣∣ +
∣∣∣ρ(a j

i ) − σ ′(a j
i )

∣∣∣ ≥
∣∣∣σ(a j

i ) − σ ′(a j
i )

∣∣∣ = | j − (2mi + 1 − j)|. (4)
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Summing all the inequalities, we get

dFR(ρ,σ ) + dFR(ρ,σ ′) ≥
4∑

i=1

2mi∑
j=1

|2 j − 2mi − 1| =
4∑

i=1

(2mi)
2

2
= r, (5)

where the second transition follows from Equation (2), and the third transition follows from Equation (3).
First, we show that ρ ∈ Bt(π) only if equality in Equation (5) holds. To see why, note that the footrule distance is always 

even and r = d↓
FR(2t) ≥ 
2t� − 1. Hence, if equality is not achieved, then dFR(ρ, σ) + dFR(ρ, σ ′) ≥ r + 2 ≥ 
2t� − 1 + 1 > 2t . 

Hence, the average distance of ρ from votes in π would be greater than t .
On the contrary, if equality is indeed achieved in Equation (5), then the average distance of ρ from votes in π is r/2 ≤ t . 

Hence, we have established that Bt(π) is the set of rankings ρ for which equality is achieved in Equation (5).
For ρ to achieve equality in Equation (5), it must achieve equality in Equation (4) for every i ∈ [4] and j ∈ [2mi], and 

it must agree with both σ and σ ′ on the positions of alternatives in A5 (i.e., σ A5 must be a suffix of ρ). For the former 
to hold, the position of a j

i in ρ must be between σ(a j
i ) and σ ′(a j

i ) = σ(a2mi+1− j
i ) (both inclusive), for every i ∈ [4] and 

j ∈ [2mi].
We claim that the set of rankings satisfying these conditions are characterized as follows.

Bt(π) =
{
ρ ∈ L(A)

∣∣∣ {ρ(a j
i ),ρ(a2mi+1− j

i )} = {σ(a j
i ),σ (a2mi+1− j

i )}
for i ∈ [4], j ∈ [2mi], and

ρ(a j
5) = σ(a j

5) = σ ′(a j
5) for j ∈ [m5]

}
. (6)

Note that instead of ρ(a j
i ) and ρ(a2mi+1− j

i ) both being in the interval [σ(a j
i ), σ(a2mi+1− j

i )], we are claiming that they 
must be the two endpoints. First, consider the middle alternatives in each Ai (i ∈ [4]), namely ami

i and ami+1
i . Both must be 

placed between σ(ami
i ) = σ ′(ami+1

i ) and σ(ami+1
i ) = σ ′(ami

i ); but these two numbers differ by exactly 1. Hence,{
ρ(ami

i ),ρ(ami+1
i )

}
=

{
σ(ami

i ),σ (ami+1
i )

}
.

Consider the two adjacent alternatives, namely ami−1
i and ami+2

i . Given that the middle alternatives ami
i and ami+1

i oc-
cupy their respective positions in σ or σ ′ , the only positions available to ρ for placing the two adjacent alternatives are 
the endpoints of their common feasible interval [σ(ami−1

i ), σ(ami+2
i )]. Continuing this argument, each pair of alternatives 

(a j
i , a

2mi+1− j
i ) must occupy the two positions {σ(a j

i ), σ(a2mi+1− j
i )} for every i ∈ [4] and j ∈ [mi].

That is, ρ can either keep the alternatives a j
i and a2mi+1− j

i as they are in σ , or place them according to σ ′ (equivalently, 
swapping them in σ ) for every i ∈ [4] and j ∈ [2mi]. Note that these choices are independent of each other. We established 
that a ranking ρ is in Bt(π) only if it is obtained in this manner and has σ A5 as its suffix.

Further, it can be seen that each of these choices (keeping or swapping the pair in σ ) maintain dFR(ρ, σ) + dFR(ρ, σ ′)
invariant. Hence, all such rankings ρ satisfy dFR(ρ, σ) + dFR(ρ, σ ′) = r, and thus belong to Bt(π). This reaffirms our original 
claim that Bt(π) is given by Equation (6).

In summary, all rankings in Bt(π) can be obtained by taking σ , and arbitrarily choosing whether to swap the pair of 
alternatives a j

i and a2mi+1− j
i for each i ∈ [4] and j ∈ [2mi].

Note that σ , σ ′ ∈ Bt(π) and dFR(σ , σ ′) = r (this distance is given by the summation in Equation (5)). Hence, D(Bt(π))

≥ r. Now, we prove that its minimax distance is at least r as well. Take a ranking ρ ∈ L(A). We need to show that there 
exists some τ ∈ Bt(π) such that dFR(ρ, τ ) ≥ r.

Consider alternatives a j
i and a2mi+1− j

i for i ∈ [4] and j ∈ [2mi]. We know that τ must satisfy {τ (a j
i ), τ (a2mi+1− j

i )} =
{σ(a j

i ), σ(a2mi+1− j
i )} in order to belong to Bt(π). This allows two possible ways for placing the pair of alternatives. Let τ

pick the optimal positions that maximize

τi, j(ρ) = |τ (a j
i ) − ρ(a j

i )| + |τ (a2mi+1− j
i ) − ρ(a2mi+1− j

i )|.
That is, τi, j(ρ) should equal Mi, j(ρ), which we define as

max
{
|σ(a j

i ) − ρ(a j
i )| + |σ(a2mi+1− j

i ) − ρ(a2mi+1− j
i )|,

|σ(a2mi+1− j
i ) − ρ(a j

i )| + |σ(a j
i ) − ρ(a2mi+1− j

i )|
}
.

Note that the choice for each pair of alternatives (a j
i , a

2mi+1− j
i ) can be made independently of every other pair. Further, 

making the optimal choice for each pair guarantees that dFR(ρ, τ ) is at least
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4∑
i=1

2mi∑
j=1

τi, j(ρ) =
4∑

i=1

2mi∑
j=1

Mi, j(ρ),

which we will now show to be at least r.
Algorithm 1 describes how to find the optimal ranking τ ∈ Bt(π) mentioned above, which satisfies τi, j(ρ) = Mi, j(ρ) for 

every i ∈ [4] and j ∈ [2mi]. It starts with an arbitrary τ ∈ Bt(π), and swaps every sub-optimally placed pair (a j
i , a

2mi+1− j
i )

for i ∈ [4] and j ∈ [2mi]. In the algorithm, τa↔b denotes the ranking obtained by swapping alternatives a and b in τ .

ALGORITHM 1: Finds a ranking in Bt(π) at a footrule distance of at least 
2t� from any given ranking.
Data: Ranking ρ ∈ L(A)

Result: Ranking τ ∈ Bt (π) such that dFR(τ , ρ) ≥ 
2t�
τ ← an arbitrary ranking from Bt(π);
for i ∈ [4] do

for j ∈ [2mi ] do

d j
i ← |ρ(a j

i ) − τ (a j
i )|;

d2mi +1− j
i ← |ρ(a2mi +1− j

i ) − τ (a2mi +1− j
i )|;

if d j
i + d2mi +1− j

i < Mi, j(ρ) then
τ ← τ

a j
i ↔a

2mi +1− j
i

;

end
end

end
return τ ;

Finally, we show that dFR(ρ, τ ) ≥ r. First, we establish the following lower bound on Mi, j(ρ).

Mi, j(ρ) ≥ 1

2

(
|σ(a j

i ) − ρ(a j
i )| + |σ(a2mi+1− j

i ) − ρ(a2mi+1− j
i )|

+ |σ(a2mi+1− j
i ) − ρ(a j

i )| + |σ(a j
i ) − ρ(a2mi+1− j

i )|
)

≥ |σ(a2mi+1− j
i ) − σ(a j

i )|
= |2mi + 1 − 2 j|,

where the first transition holds because the maximum of two terms is at least as much as their average, and the second 
transition uses the triangle inequality on appropriately paired terms. Now, we have

dFR(τ ,ρ) ≥
4∑

i=1

2mi∑
j=1

Mi, j(ρ) ≥
4∑

i=1

2mi∑
j=1

|2mi + 1 − 2 j| =
4∑

i=1

(2mi)
2

2
= r,

where the third transition holds due to Equation (2), and the fourth transition holds due to Equation (3). Hence, the minimax 
distance of Bt(π) is at least r = d↓

FR(2t), as required.

The Cayley distance: Next, let dCY denote the Cayley distance. Recall that dCY(σ , τ ) equals the minimal number of swaps 
(of possibly non-adjacent alternatives) required in order to transform σ to τ . It is easy to check that the maximum Cayley 
distance is D = m − 1; hence, it has α = 1. We prove the result for t ≤ m/4. Note that d↓

CY(2t) = 
2t�. Define rankings 
σ , σ ′ ∈L(A) as follows.

σ = (a1 � . . . � a2
2t�︸ ︷︷ ︸ � a2
2t�+1 � . . . � am),

σ ′ = (a2
2t� � . . . � a1︸ ︷︷ ︸ � a2
2t�+1 � . . . � am).

Let profile π consist of n/2 instances of σ and σ ′ each. We claim that Bt(π) has the following structure, which is very 
similar to the ball for the footrule distance.

Bt(π) =
{
ρ ∈ L(A)

∣∣∣ {ρ(ai),ρ(a2
2t�+1−i)} = {i,2 
2t� + 1 − i} for i ∈ [
2t�],
and ρ(ai) = i for i > 2 
2t�

}
. (7)

First, we observe the following simple fact: If rankings τ and ρ mismatch (i.e., place different alternatives) in r different 
positions, then dCY(τ , ρ) ≥ r/2. Indeed, consider the number of swaps required to convert τ into ρ . Since each swap 
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can make τ and ρ consistent in at most two more positions, it would take at least r/2 swaps to convert τ into ρ , i.e., 
dCY(τ , ρ) ≥ r/2.

Now, note that σ and σ ′ mismatch in each of first 2 
2t� positions. Hence, every ranking ρ ∈L(A) must mismatch with 
at least one of σ and σ ′ in each of first 2 
2t� positions. Together with the previous observation, this implies

dCY(ρ,σ ) + dCY(ρ,σ ′) ≥ 
2t� . (8)

Every ranking ρ that achieves equality in Equation (8) is clearly in Bt(π) because its average distance from the votes 
in π is 
2t�/2 ≤ t . Further, every ranking ρ that achieves a strict inequality in Equation (8) is outside Bt(π) because its 
average distance from the votes in π is at least (
2t� + 1)/2 > t . Hence, Bt(π) consists of rankings that satisfy dCY (ρ, σ) +
dCY(ρ, σ ′) = 
2t�.

Now, any ranking ρ satisfying equality in Equation (8) must be consistent with exactly one of σ and σ ′ in each of first 
2 
2t� positions, and with both σ and σ ′ in the later positions. The former condition implies that for every i ∈ 
2t�, ρ must 
place the pair of alternatives (ai, a2
2t�+1−i) in positions i and 2 
2t� + 1 − i, either according to σ or according to σ ′ . This 
confirms our claim that Bt(π) is given by Equation (7).

We now show that k(Bt(π)) ≥ 
2t�. Take a ranking ρ ∈L(A). We construct a ranking τ ∈ Bt(π) such that τ mismatches 
with ρ in each of first 2 
2t� positions. Together with our observation that the Cayley distance is at least half of the number 
of positional mismatches, this would imply that the minimax distance of Bt (π) is at least 
2t�, as required.

We construct τ by choosing the placement of the pair of alternatives (ai, a2
2t�+1−i), independently for each i ∈ 
2t�, 
in a way that τ mismatches with ρ in positions i and 2 
2t� + 1 − i both. Let I(X) denote the indicator variable that is 1
if statement X holds, and 0 otherwise. Let r = I (ρ(ai) = i) + I 

(
ρ(a2
2t�+1−i) = 2 
2t� + 1 − i

)
. Consider the following three 

cases.

r = 0: Set τ (ai) = i and τ (a2
2t�+1−i) = 2 
2t� + 1 − i.
r = 1: Without loss of generality, assume ρ(ai) = i. Set τ (ai) = 2 
2t� + 1 − i and τ (a2
2t�+1−i) = i.
r = 2: Set τ (ai) = 2 
2t� + 1 − i and τ (a2
2t�+1−i) = i.

Finally, set τ (ai) = i for all i > 2 
2t�. This yields a ranking τ that is in Bt(π), and mismatches ρ in each of first 2 
2t�
positions; hence, dCY(ρ, τ ) ≥ 
2t�, as required.

The maximum displacement distance: Finally, let dMD denote the maximum displacement distance. Note that it can be at 
most D = m − 1; hence, it also has α = 1. However, this distance metric requires an entirely different technique than the 
ones used for previous distances. For example, taking any two rankings at maximum distance from each other does not 
work. We prove this result for t ≤ m/4. Once again, note that d↓

MD(2t) = 
2t�.
Consider rankings σ and σ ′ defined as follows.

σ = (a1 � . . . � a
2t�︸ ︷︷ ︸ � a
2t�+1 � . . . � a2
2t�︸ ︷︷ ︸ � arest),

σ ′ = (a
2t�+1 � . . . � a2
2t�︸ ︷︷ ︸ � a1 � . . . � a
2t�︸ ︷︷ ︸ � arest),

where arest is shorthand for a2
2t�+1 � . . . � am . Note that the blocks of alternatives a1 through a
2t� and a
2t�+1 through 
a2
2t� are shifted to each other’s positions in the two rankings. Thus, each of a1 through a2
2t� have a displacement of 
exactly 
2t� between the two rankings. Thus, dMD(σ , σ ′) = 
2t�.

Consider the profile π consisting of n/2 instances of σ and σ ′ each. Clearly, σ and σ ′ have an average distance of 

2t�/2 ≤ t from rankings in π . Hence, {σ , σ ′} ∈ Bt(π). Surprisingly, in this case we can show that the minimax distance of 
Bt(π) without any additional information regarding the structure of Bt(π).

Take a ranking ρ ∈L(A). The alternative placed first in ρ must be ranked at a position 
2t� or below in at least one of σ
and σ ′ . Hence, max(dMD(ρ, σ), dMD(ρ, σ ′)) ≥ 
2t�. Thus, there exists a ranking in Bt(π) at distance at least 
2t� from ρ , 
i.e., the minimax distance of Bt(π) is at least 
2t�, as desired.

This completes the proof of the special case of even n for all four distance metrics. Now, consider the case of odd n.

Odd n: To extend the proof to odd values of n, we simply add one more instance of σ than σ ′ . The key insight is that with 
large n, the distance from the additional vote would have little effect on the average distance of a ranking from the profile. 
Thus, Bt(π) would be preserved, and the proof would follow.

Formally, let L ≥ 2 and t ∈ (1/L, 1 − 1/L). For the case of even n, the proofs for all four distance metrics proceeded as 
follows: Given the feasible distance r = d↓(2t), we constructed two rankings σ and σ ′ at distance r from each other such 
that Bt(π) is the set of rankings at minimal total distance from the two rankings, i.e.,

Bt(π) = {
ρ ∈ L(A) | d(ρ,σ ) + d(ρ,σ ′) = r

}
.

Let n ≥ 3 be odd. Consider the profile π that has (n − 1)/2 instances of σ and σ ′ each, and an additional instance of 
an arbitrary ranking. In our generic proof for all four distance metrics, we obtain conditions under which Bt(π) = Bt(π

′)
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where π ′ is obtained by removing the arbitrary ranking from π (and hence has an even number of votes). We already 
proved that k(Bt(π

′)) ≥ d↓(2t). Hence, obtaining Bt(π) = Bt(π
′) would also show the lower bound d↓(2t) for odd n.

In more detail, our objective is that every ranking ρ with d(ρ, σ) + d(ρ, σ ′) = r (which may have a worst-case distance 
of D from the additional arbitrary ranking) should be in Bt(π), and every ranking ρ with d(ρ, σ) + d(ρ, σ ′) > r should be 
outside Bt(π).

First, let d ∈ {dKT , dCY , dMD}. If d(ρ, σ) + d(ρ, σ ′) > r, then d(ρ, σ) + d(ρ, σ ′) ≥ r + 1. The total error incurred by rankings 
of distance r from π is n−1

2 · r, and a distance of D from the additional ranking. This means that

t ≥
n−1

2 · r + D

n
.

For rankings with an error greater than r to be outside Bt(π), we must have

t <

n−1
2 · (r + 1)

n
.

Combining the inequalities, we obtain that

n−1
2 · r + D

n
≤ t <

n−1
2 · (r + 1)

n

⇔ n − 1

2
· r + D ≤ n · t <

n − 1

2
· (r + 1)

⇔ r + 2D

n − 1
≤ 2n

n − 1
· t < r + 1

⇔ r ≤ 2t − 2D − 2t

n − 1
< r +

(
1 − 2D

n − 1

)
. (9)

Choose n ≥ 2LD + 1. Then, 2D/(n − 1) ≤ 1/L < {2t}. Note that⌊
2t − 2D − 2t

n − 1

⌋
=

⌊

2t� + {2t} − 2D − 2t

n − 1

⌋
= 
2t� ,

where the last equality holds because we showed (2D − 2t)/(n − 1) < {2t}.
In all three distance metrics considered thus far, we had 
2t� = d↓(2t). Let r = 
2t�. We show that r = 
2t� satisfies 

Equation (9), thus yielding Bt(π) with minimax distance at least r = d↓(2t), as required. Note that

r ≤ 2t − 2D − 2t

n − 1

is satisfied by definition from Equation (9). We also have(
2t − 2D − 2t

n − 1

)
−

(
r + 1 − 2D

n − 1

)
= 2t + 2t

n − 1
− 
2t� − 1

= {2t} + 2t

n − 1
− 1

< 1 − 1

L
+ 1

L
− 1 = 0.

Hence, we have k(t) ≥ d↓(2t) for n ≥ 2LD + 1.
Next, consider the footrule distance. If 
2t� is even (i.e., if 
2t� = d↓(2t)), then the above proof works because r = 
2t�

is a feasible distance. If 
2t� is odd, then we must choose r = 
2t� − 1. However, we have an advantage: since the footrule 
distance is always even, every ranking ρ with d(ρ, σ) + d(ρ, σ ′) > r must have d(ρ, σ) + d(ρ, σ ′) ≥ r + 2. Hence, we only 
need

n−1
2 · r + D

n
≤ t <

n−1
2 · (r + 2)

n

⇔ r ≤ 2t − 2D − 2t

n − 1
< r +

(
2 − 2D

n − 1

)
. (10)

Note that r = 
2t�−1 clearly satisfies the first inequality in Equation (10). For the second inequality, note that r decreased 
by 1 compared to earlier but 1 −2D/(n −1) increased to 2 −2D/(n −1) instead. Hence, the second inequality is still satisfied, 
and we get Bt(π) with minimax distance at least r = 
2t� − 1 = d↓(2t), as required. �
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Fig. 1. Positive correlation of t∗ with the noise parameter.

4. Approximations for unknown average error

In the previous sections we derived the optimal rules when the upper bound t on the average error is given to us. In 
practice, the given bound may be inaccurate. We know that using an estimate ̂t that is still an upper bound (̂t ≥ t) yields a 
ranking at distance at most 2̂t from the ground truth in the worst case. What happens if it turns out that ̂t < t? We show 
that the output ranking is still at distance at most 4t from the ground truth in the worst case.

Theorem 6. For a distance metric d, a profile π consisting of n noisy rankings at an average distance of at most t from the true 
ranking σ ∗ , and ̂t < t, d(OPT

d (̂t, π), σ ∗) ≤ 4t.

To prove the theorem, we make a detour through minisum rules. For a distance metric d, let MiniSum
d , be the voting 

rule that always returns the ranking minimizing the sum of distances (equivalently, average distance) from the rankings in 
the given profile according to d. Two popular minisum rules are the Kemeny rule for the Kendall tau distance (MiniSum

dKT ) 
and the minisum rule for the footrule distance (MiniSum

dFR ), which approximates the Kemeny rule [18].5 For a distance 
metric d (dropped from the superscripts), let d(π, σ ∗) ≤ t . We claim that the minisum ranking MiniSum(π) is at distance 
at most min(2t, 2k(t, π)) from σ ∗ . This is true because the minisum ranking and the true ranking are both in Bt(π), and 
Lemma 1 shows that its diameter is at most min(2t, 2k(t, π)).

Returning to the theorem, if we provide an underestimate ̂t of the true worst-case average error t , then using Lemma 1,

d
(
MiniMax(B̂t(π)),MiniSum(π

)
) ≤ 2̂t ≤ 2t,

d
(
MiniSum(π),σ ∗) ≤ D(Bt(π)) ≤ 2t.

By the triangle inequality, d 
(
MiniMax(B̂t(π)),σ ∗) ≤ 4t .

5. Experimental results

We compare our worst-case optimal voting rules OPT
d against a plethora of voting rules used in the literature: plurality, 

Borda count, veto, the Kemeny rule, single transferable vote (STV), Copeland’s rule, Bucklin’s rule, the maximin rule, Slater’s 
rule, Tideman’s rule, and the modal ranking rule (for definitions see, e.g., [13]).

Our performance measure is the distance of the output ranking from the actual ground truth. In contrast, for a given d, 
OPT

d is designed to optimize the worst-case distance to any possible ground truth. Hence, crucially, OPT
d is not guaranteed to 

outperform other rules in our experiments.
We use two real-world datasets containing ranked preferences in domains where ground truth rankings exist. Mao, 

Procaccia, and Chen [27] collected these datasets — dots and puzzle — via Amazon Mechanical Turk. For dataset dots (resp., 
puzzle), human workers were asked to rank four images that contain a different number of dots (resp., different states of 
an 8-Puzzle) according to the number of dots (resp., the distances of the states from the goal state). Each dataset has four 
different noise levels (i.e., levels of task difficulty), represented using a single noise parameter: for dots (resp., puzzle), higher 
noise corresponds to ranking images with a smaller difference between their number of dots (resp., ranking states that are 
all farther away from the goal state). Each dataset has 40 profiles with approximately 20 votes each, for each of the 4 noise 
levels. Points in our graphs are averaged over the 40 profiles in a single noise level of a dataset.

First, as a sanity check, we verified (Fig. 1) that the noise parameter in the datasets positively correlates with our notion 
of noise — the average error in the profile, denoted t∗ (averaged over all profiles in a noise level). Strikingly, the results 
from the two datasets are almost identical!

Next, we compare OPT
d and MiniSum

d against the voting rules listed above, with distance d as the measure of error. 
We use the average error in a profile as the bound t given to OPT

d , i.e., we compute OPT
d(t∗, π) on profile π where 

t∗ = d(π, σ ∗). While this is somewhat optimistic, note that t∗ may not be the (optimal) value of t that achieves the lowest 
error. Also, the experiments below show that a reasonable estimate of t∗ also suffices.

5 Minisum rules such as the Kemeny rule are also compelling because they often satisfy attractive social choice axioms. However, it is unclear whether 
such axioms contribute to the overall goal of effectively recovering the ground truth.



A.D. Procaccia et al. / Artificial Intelligence 231 (2016) 1–16 13
Fig. 2. Performance of different voting rules (Figs. 1(a) and 1(b)), and of OPT with varying ̂t (Figs. 1(c) and 1(d)). (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)

Figs. 2(a) and 2(b) show the results for the dots and puzzle datasets, respectively, under the Kendall tau distance. It 
can be seen that OPT

dKT (solid red line) significantly outperforms all other voting rules. The three other distance metrics 
considered in this paper generate similar results; the corresponding graphs are presented in the appendix.

Finally, we test OPT
d in the more demanding setting where only an estimate ̂ t of t∗ is provided. To synchronize the 

results across different profiles, we use r = (̂t − MAD)/(t∗ − MAD), where MAD is the minimum average distance of any 
ranking from the votes in a profile, that is, the average distance of the ranking returned by MiniSum

d from the input votes. 
For all profiles, r = 0 implies ̂t = MAD (the smallest value that admits a possible ground truth) and r = 1 implies ̂t = t∗ (the 
true average error). In our experiments we use r ∈ [0, 2]; here, ̂t is an overestimate of t∗ for r ∈ (1, 2] (a valid upper bound 
on t∗), but an underestimate of t∗ for r ∈ [0, 1) (an invalid upper bound on t∗).

Figs. 2(c) and 2(d) show the results for the dots and puzzle datasets, respectively, for a representative noise level (level 
3 in previous experiments) and the Kendall tau distance. We can see that OPT

dKT (solid red line) outperforms all other 
voting rules as long as ̂ t is a reasonable overestimate of t∗ (r ∈ [1, 2]), but may or may not outperform them if ̂ t is an 
underestimate of t∗ . Again, other distance metrics generate similar results (see the appendix for details).

Comments on the empirical results. It is genuinely surprising that on real-world datasets, OPT
d (a rule designed to work 

well in the worst-case) provides a significantly superior average-case performance compared to most prominent voting rules 
by utilizing minimal additional information — an approximate upper bound on the average error in the input votes.

The inferior performance of methods based on probabilistic models of error is also thought provoking. After all, these 
models assume independent errors in the input votes, which is a plausible assumption in crowdsourcing settings. But such 
probabilistic models typically assume a specific structure on the distribution of the noise, e.g., the exponential distribution 
in Mallows’ model [26], and it is almost impossible that noise in practice would follow this exact structure. In contrast, our 
approach only requires a loose upper bound on the average error in the input votes. In crowdsourcing settings where the 
noise is highly unpredictable, it can be argued that the principal may not be able to judge the exact distribution of errors, 
but may be able to provide an approximate bound on the average error.

6. Discussion

Uniformly accurate votes. Motivated by crowdsourcing settings, we considered the case where the average error in the 
input votes is guaranteed to be low. Instead, suppose we know that every vote in the input profile π is at distance at 
most t from the ground truth σ ∗ , i.e., maxσ∈π d(σ , σ ∗) ≤ t . If t is small, this is a stronger assumption because it means that 
there are no outliers, which is implausible in crowdsourcing settings but plausible if the input votes are expert opinions. In 
this setting, it is immediate that any vote in the given profile is at distance at most d↓(t) from the ground truth. Moreover, 



14 A.D. Procaccia et al. / Artificial Intelligence 231 (2016) 1–16
Fig. A.3. Results for the footrule distance (dFR): Figs. A.3(a) and A.3(b) show that OPT
dFR outperforms other rules given the true parameter, and Figs. A.3(c) 

and A.3(d) (for a representative noise level 3) show that it also outperforms the other rules with a reasonable estimate.

the proof of Theorem 4 goes through, so this bound is tight in the worst case; however, returning a ranking from the profile 
is not optimal for every profile.

Randomization. We did not consider randomized rules, which may return a distribution over rankings. If we take the error 
of a randomized rule to be the expected distance of the returned ranking from the ground truth, it is easy to obtain an 
upper bound of t . Again, the proof of Theorem 4 can be extended to yield an almost matching lower bound of d↓(t). While 
randomized rules provide better guarantees, they are often impractical: low error is only guaranteed when rankings are 
repeatedly selected from the output distribution of the randomized rule on the same profile; however, most social choice 
settings see only a single outcome realized.6

Complexity. A potential drawback of the proposed approach is computational complexity. For example, consider the Kendall 
tau distance. When t is small enough, only the Kemeny ranking would be a possible ground truth, and OPT

dKT or any 
finite approximation thereof must return the Kemeny ranking, if it is unique. The NP-hardness of computing the Kemeny 
ranking [6] therefore suggests that computing or approximating OPT

dKT is NP-hard.
One way to circumvent this computational obstacle is picking a ranking from the given profile, which provides a weaker 

bound of 3t instead of 2t on the distance from the unknown ground truth (see Theorem 2). However, in practice the optimal 
ranking can also be computed using various fixed-parameter tractable algorithms, integer programming solutions, and other 
heuristics, which are known to provide good performance for these types of computational problems (see, e.g., [8,7]). More 
importantly, the crowdsourcing settings that motivate our work inherently restrict the number of alternatives to a relatively 
small constant: a human would find it difficult to effectively rank more than, say, 10 alternatives. With a constant number 
of alternatives, we can simply enumerate all possible rankings in polynomial time, making each and every computational 
problem considered in this paper tractable. In fact, this is what we did in our experiments. Therefore, we do not view 
computational complexity as an insurmountable obstacle.
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Appendix A. Additional experiments

In the paper, we presented experiments (Fig. 2) that compare our proposed worst-case optimal rule against other voting 
rules when: i) it receives the true error of a profile t∗ = d(π, σ ∗) as an argument (Figs. 2(a) and 2(b)), and ii) when it 
receives an estimate ̂t of t∗ (Figs. 2(c) and 2(d)). In these experiments, we used the Kendall tau distance as the measure of

6 Exceptions include cases where randomization is used for circumventing impossibilities [29,14,11].
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Fig. A.4. Results for the Cayley distance (dCY ): Figs. A.4(a) and A.4(b) show that OPT
dCY outperforms other rules given the true parameter, and Figs. A.4(c) 

and A.4(d) (for a representative noise level 3) show that it also outperforms the other rules with a reasonable estimate.

Fig. A.5. Results for the maximum displacement distance (dMD): Figs. A.5(a) and A.5(b) show that OPT
dMD outperforms other rules given the true parameter, 

and Figs. A.5(c) and A.5(d) (for a representative noise level 3) show that it also outperforms the other rules with a reasonable estimate.

error. In this section we present additional experiments in an essentially identical setting but using the other three distance 
metrics considered in this paper as the measure of error. These experiments affirm that our proposed rules are superior to 
other voting rules independent of the error measure chosen. Figs. A.3, A.4, and A.5 show the experiments for the footrule 
distance, the Cayley distance, and the maximum displacement distance, respectively.
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