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In cooperative multiagent systems an alternative that maximizes the social welfare—the sum
of utilities—can only be selected if each agent reports its full utility function. This may be
infeasible in environments where communication is restricted. Employing a voting rule to
choose an alternative greatly reduces the communication burden, but leads to a possible
gap between the social welfare of the optimal alternative and the social welfare of the
one that is ultimately elected. Procaccia and Rosenschein (2006) [13] have introduced the
concept of distortion to quantify this gap.
In this paper, we present the notion of embeddings into voting rules: functions that receive
an agent’s utility function and return the agent’s vote. We establish that very low distortion
can be obtained using randomized embeddings, especially when the number of agents is
large compared to the number of alternatives. We investigate our ideas in the context
of three prominent voting rules with low communication costs: Plurality, Approval, and
Veto. Our results arguably provide a compelling reason for employing voting in cooperative
multiagent systems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A major challenge that arises in the design and implementation of multiagent systems is the aggregation of the pref-
erences of the agents. Voting theory provides a neat solution by giving extremely well-studied methods of preference
aggregation. In recent years the theoretical aspects of computational voting have been enthusiastically investigated, es-
pecially within the AI community (see, e.g., [15, Chapter 1] and the many references therein). Moreover, voting has been
applied for preference aggregation in areas as diverse as Planning, Scheduling, Recommender Systems, Collaborative Filtering,
Information Extraction, and Computational Linguistics (see, e.g., [7,12,16]).

While the appeal of voting in the context of heterogeneous, competitive multiagent systems is apparent, some multiagent
systems are centrally designed and fully cooperative (e.g., systems for planning and scheduling, recommender systems, collab-
orative filtering, and so on). We believe that, to date, the benefit of employing voting in such domains was unclear. Indeed,
agents are normally assumed to compute a utility for every possible alternative. If the agents are cooperative then they can
simply communicate their utilities for the different alternatives, and subsequently select an alternative that maximizes the
social welfare, i.e., the sum of utilities.

However, accurately conveying an agent’s utility function for each alternative may be very costly in terms of commu-
nication. This could prove to be a serious obstacle in domains where communication is restricted. Communication may
be limited by the physical properties of the system (e.g., slow or error-prone transmitters, systems with low energy con-
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sumption requirements, etc.) or the representation of the full utility functions may require a huge amount of information.
Blumrosen et al. [1] outline additional persuasive reasons why communication should be restricted in multiagent settings.
Fortunately, some prominent voting rules—functions that select an alternative given the preferences of the agents—impose
a very small communication burden [5], and are moreover resistant to errors in communication [14].

For example, consider the paradigmatic cooperative multiagent system domain: scanning an area on Mars with multiple
rovers (which are known to have limited communication capabilities). Suppose the rovers must select or update their joint
plan (this may happen very often), and there are one million alternatives. Moreover, suppose each rover computes a utility
for each alternative on a scale of one to one million (this is, in fact, a very coarse scale). A rover would need to communicate
106 · log(106) ≈ 20 · 106 bits in order to report its utility function. In contrast, under the Plurality voting rule, where each
agent votes for a single alternative and the alternative with most votes wins, a rover only needs to transmit twenty bits. Even
though current applications may involve a small number of rovers, the research in wireless communication systems already
envisages large-scale applications (e.g., for environment monitoring, disaster relief, battlefield operations and surveillance)
with many ultra-small, possibly mobile, wireless devices such as sensors or mini-robots that cooperate towards a common
goal. Such devices are expected to be fully autonomous, a property that calls for low energy consumption and, consequently,
for low communication requirements. The Harvard Micro Air Vehicles Project1 provides a concrete example of such a system.

In this paper we shall argue that, in some cooperative multiagent systems, exact maximization of the social welfare can
be replaced by very simple voting rules (given an extra ingredient that we present below). The benefit is a huge reduction
in the communication burden, whereas the cost, a deterioration in the social welfare of the outcome, will be shown to be
almost negligible in some settings. This arguably provides a pivotal reason for employing voting in cooperative multiagent
systems, and in AI in general.

1.1. Our approach

The degree to which the social welfare of the outcome can decrease when voting is used is captured by the notion
of distortion, introduced by Procaccia and Rosenschein [13]. They focus on voting rules that receive as input a ranking of
the alternatives, and, crucially, assume that each agent reports a ranking such that the alternative that is ranked in the
kth place has the kth highest utility. Under this assumption, they define the distortion of a voting rule to be the worst-case
ratio between the maximum social welfare over all the alternatives, and the social welfare of the winner of the election; the
worst-case is taken over all the possible utility functions of the agents. After proving some impossibility results, Procaccia
and Rosenschein further restrict the structure of the utility functions. Even under this additional (very strong) assumption,
they show that the distortion of most prominent voting rules is linear in the number of alternatives. The approach of
Procaccia and Rosenschein is descriptive: they propose to use the notion of distortion as a criterion in the comparison of
different voting rules.

Our main conceptual contribution is the consideration of embeddings into voting rules. An embedding is a set of instruc-
tions that inform each agent how to vote, based only on the agent’s own utility function, that is, without any communication
or coordination between different agents. More accurately, an embedding into a specific voting rule is a function from utility
functions to votes that are valid under the voting rule. For instance, consider the simple Plurality rule described above. Given
a utility function, an embedding into Plurality returns the alternative that the agent votes for. Procaccia and Rosenschein
implicitly use one specific embedding, but many different embeddings exist. In this sense, our approach is algorithmic: we
wish to design embeddings in a way that minimizes the distortion.

We redefine the notion of distortion to take embeddings into account. The distortion of an embedding into a voting rule is
still the worst-case ratio between the maximum social welfare and the social welfare of the winner, but now the winner
depends both on the voting rule and on the embedding, that is, on the way the utilities of the agents are translated into
votes. The worst-case is taken over all possible utilities; we do not make any assumption regarding the utilities, except that
they are normalized.

We take the idea of embeddings into voting rules one step further by allowing randomized embeddings. A randomized
embedding randomly chooses the agent’s vote, according to some probability distribution. The distortion is defined similarly,
by taking into account the expected social welfare of the winner of the election. As we shall see, randomization gives us
great power and flexibility, and ultimately provides us with the tools to design truly low-distortion embeddings.

We wish to design low-distortion embeddings into voting rules with low communication complexity. Indeed, given that
each of our cooperative agents votes according to the instructions provided by the embedding (in a fully decentralized way),
then an alternative with social welfare close to optimal may be elected in the face of restricted communication. We find the
existence of low-distortion embeddings rather striking, as the social welfare is a centralized concept.

1.2. Our results

We study the distortion of embeddings into three voting rules: Plurality, Approval (each agent approves a subset of
alternatives), and Veto (each agent gives a “negative point” to one alternative). Plurality and Veto have the smallest com-

1 http://robobees.seas.harvard.edu.
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munication burden among all prominent voting rules: only log m bits per agent, where m is the number of alternatives.
Approval requires more communication, m bits per agent, but still less than other prominent voting rules.

We first deal with the Plurality rule. We show that any deterministic embedding into Plurality has distortion Ω(m2),
and also provide a matching upper bound. Our main result deals with randomized embeddings into Plurality: we show that
the naïve embedding into Plurality, which selects an alternative with probability proportional to its utility, yields constant
distortion when n = Ω(m ln m), where n is the number of agents, and has extremely low distortion, specifically 1 + o(1), for
larger values of n.

Next we investigate the Approval rule. We give a lower bound of Ω(m) for deterministic embeddings, and also present
a matching upper bound. Our randomized upper bounds for Approval follow directly from the upper bounds for Plurality,
since any embedding into Plurality is also an embedding into Approval.

These results apply to the case n � m. Even though we have no positive theoretical results for the case n � m, we present
experimental results from the application of randomized embeddings into Plurality and Approval on random utility profiles;
the results suggest that relatively low distortion can also be achieved in this case as well provided that the number of
agents is not very small.

Finally, we consider the Veto rule. We show that any deterministic embedding into Veto has infinite distortion, and the
same is true for randomized embeddings if n < m − 1. We further show that low-distortion embeddings into Veto can be
obtained, albeit using a large number of agents. Our related positive result is stated in a more general form and applies to
any scoring protocol.

2. Embeddings into Plurality

We denote by N = {1, . . . ,n} the set of agents, and by A, |A| = m, the set of alternatives.
We assume that the agents have normalized cardinal utilities over A. Specifically, let U = U (A) be the set of utility

functions u over A such that for each x ∈ A, u(x) � 0, and
∑

x∈A u(x) = 1. Each agent i has a utility function u ∈ U . A utility
profile is a vector of utility functions

u = 〈u1, . . . , un〉 ∈ U n.

The social welfare of an alternative x ∈ A with respect to u ∈ U n , denoted by sw(x,u), is the sum of the utilities of x for all
agents:

sw(x,u) =
∑
i∈N

ui(x).

In our formal presentation, a voting rule is defined as a function that selects a set of alternatives rather than a single
alternative. Such a function is formally known as a voting correspondence, hence the term voting rule is slightly abused. We
must deal with sets of winners since our rules are based on notions of score, and there might be a tie with respect to the
maximum score.

Under the Plurality rule, each agent casts its vote in favor of a single alternative. The set of winners is the set of alterna-
tives with a maximum number of votes.

A deterministic embedding into Plurality is a function f : U → A. Informally, given an agent i ∈ N with a utility function
u ∈ U , f (u) is the alternative which agent i votes for under the embedding f . Given a utility profile u ∈ U n and an
embedding f , denote the (Plurality) score of x ∈ A by

sc(x, f ,u) = ∣∣{i ∈ N: f (ui) = x
}∣∣,

and denote the set of winners by

win( f ,u) = argmax
x∈A

sc(x, f ,u).

Note that the argmax function returns a set of maximal alternatives.
A randomized embedding randomly selects one of the alternatives, that is, it is a function f : U → �(A), where �(A) is

the space of probability distributions over A. Put another way, given u ∈ U , f (u) is a random variable that takes the value
x ∈ A with probability p(x), i.e.,

∑
x∈A p(x) = 1. With respect to a randomized embedding f , sc(x, f ,u) is a random variable

that takes values in {1, . . . ,n}, and win( f ,u) is a random variable that takes values in 2A , the powerset of A. Less formally,
given a randomized embedding f , a utility profile u, and S ⊆ A, we have some probability (possibly zero) of S being the
set of winners when f is applied to u.

As a measure of the quality of an embedding, we use the notion of distortion, introduced by Procaccia and Rosenschein
[13], but adapt it to apply to general embeddings.
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Definition 1 (Distortion).

1. Let f : U → A be a deterministic embedding, u ∈ U n . The distortion of f at u is

dist( f ,u) = maxy∈A sw(y,u)

minx∈win( f ,u) sw(x,u)
.

2. Let f : U → �(A) be a randomized embedding, u ∈ U n . The distortion of f at u is

dist( f ,u) = maxy∈A sw(y,u)

E[minx∈win( f ,u) sw(x,u)] .

3. Let f be a deterministic or randomized embedding. The distortion of f is

dist( f ) = max
u∈U n

dist( f ,u).

Let us give an intuitive interpretation of this important definition. The distortion of a deterministic embedding is the
worst-case ratio between the social welfare of the most popular alternative, and the social welfare of the least popular
winner, where the worst-case is with respect to all possible utility profiles. In other words, we are interested in the question:
how small can the social welfare of one of the winners be, when compared to the alternative with maximum social welfare?

Our focus on the social welfare of the “worst” winner is appropriate since the analysis is worst-case. Alternatively, it is
possible to think of voting rules that elect only one of the alternatives with maximum score, but in the worst-case the most
unpopular one is elected, that is, in the worst-case ties are broken in favor of alternatives with lower social welfare; this is
the interpretation of Procaccia and Rosenschein [13].

The definition of distortion with respect to randomized embeddings is slightly more subtle. Here there is no definite
winner. However, given a utility profile u ∈ U , we can talk about the expected minimum social welfare among the winners,
since the set of winners is simply a random variable that takes values in 2A , hence minx∈win( f ,u) sw(x,u) is a random
variable that takes values in the interval [0,n] and its expectation is well defined. The rest of the definition is identical to
the deterministic case.

2.1. Deterministic embeddings

Procaccia and Rosenschein [13] consider a specific, naïve deterministic embedding into Plurality. Their embedding simply
maps a utility function u ∈ U to an alternative with maximum utility, that is, f (u) ∈ argmaxx∈Au(x). They show that its
distortion is m − 1 under a very restricted definition of distortion (called misrepresentation) that assumes a specific structure
of utility functions.

It is easy to see that the distortion of this naïve embedding, according to Definition 1, is at most m2. Indeed, let u ∈ U ,
and let x ∈ win( f ,u), where f is the naïve embedding. By the Pigeonhole Principle, it must hold that sc(x, f ,u) � n/m.
Now, for each agent i ∈ N such that f (ui) = x, it must hold that ui(x) � 1/m, since x has maximum utility and there must
exist an alternative with utility 1/m (again, by the Pigeonhole Principle). We deduce that sw(x,u) � n/m2. On the other
hand, for any y ∈ A, sw(y,u) � n. Therefore,

dist( f ) = max
u∈U n

maxy∈A sw(y,u)

minx∈win( f ,u) sw(x,u)
� n

n/m2
= m2.

We wish to ask whether there is a clever deterministic embedding into Plurality that (asymptotically) beats the m2 upper
bound given by the naïve one. Our first theorem answers this question in the negative.

Theorem 2. Let |A| = m � 3, |N| = n � 	m+1
2 
, and let f : U → A be a deterministic embedding into Plurality. Then dist( f ) =

Ω(m2).

Proof. Let f be a deterministic embedding into Plurality. For every pair of distinct alternatives x, y ∈ A, let uxy ∈ U such
that uxy(x) = 1/2, uxy(y) = 1/2, and uxy(z) = 0 for every z ∈ A \ {x, y}. We claim that we can assume that f (uxy) ∈ {x, y},
since otherwise the distortion is infinite. Indeed, if f (uxy) = z /∈ {x, y}, then consider a utility profiles u where ui ≡ uxy for
all i ∈ N . Then win( f ,u) = {z}, but sw(z,u) = 0, whereas, say, sw(x,u) = n/2 > 0.

Let T be a tournament on A, that is, a complete asymmetric binary relation (see, e.g., [10]). For every two alternatives
x, y ∈ A, we have that xT y (read: x dominates y) if f (uxy) = x, and yT x if f (uxy) = y. By our claim above, T is well defined.

Since the number of pairs of alternatives is
(m

2

) = m(m−1)
2 , by the Pigeonhole Principle there must be an alternative that

is dominated by at least m−1
2 other alternatives; without loss of generality this alternative is a ∈ A. Let A′ be a subset of

alternatives of size 	m−1
2 
 such that for all x ∈ A′ , xT a. Further, let A′′ = A \ (A′ ∪ {a}) and notice that |A′′| = �m−1

2 �. Define
a utility function u∗ ∈ U as follows: for every x ∈ A′′ , u∗(x) = 1/|A′′|; for every x ∈ A \ A′′ , u∗(x) = 0. Then without loss of
generality f (u∗) = b, with b ∈ A′′ , otherwise the distortion is infinite by the same reasoning as above.
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Now, we have |A′| + 1 blocks of agents, each of size either 	n/(|A′| + 1)
 or �n/(|A′| + 1)�. All the agents in the first
block, which is at least as large as any other, have the utility function u∗ (therefore they vote for b). For each x ∈ A′ , there
is a block of agents with the utility function uax (hence they vote for x). Given this utility profile u, b must be among the
winners, that is, b ∈ win( f ,u). We have that

sw(b,u) �
⌈

n

	m−1
2 
 + 1

⌉
· 1

�m−1
2 � � 8n

m2
,

whereas

sw(a,u) �
(

n −
⌈

n

	m−1
2 
 + 1

⌉)
· 1

2
� n

6
.

The distortion is at least as large as the ratio between the maximum social welfare and the social welfare of a winner with
respect to the specific utility profile u, that is,

dist( f ) � dist( f ,u) � sw(a,u∗)
sw(b,u∗)

= Ω
(
m2). �

2.2. Randomized embeddings

Theorem 2 implies that the distortion of any deterministic embedding into Plurality is quite high. Can we do better using
randomized embeddings? In general, the answer is definitely positive. However, we start our investigation of randomized
embeddings into Plurality with a negative result that holds when the number of agents is small.

Theorem 3. Let |N| = n � m = |A|. Then any randomized embedding f : U → �(A) into Plurality has distortion Ω(m/n).

Proof. Let f be an embedding into Plurality. Consider a utility function u∗ ∈ U where u∗(x) = 1/m for all x ∈ A. There must
exist x∗ ∈ A such that f (u∗) = x∗ with probability at most 1/m.

For i = 1,2, . . . ,n − 1, let ui ≡ u∗ be the utility function of agent i, and let the utility function of agent n be defined by
un(x∗) = 1, un(x) = 0 for all x ∈ A \ {x∗}. We have that sw(x∗,u) = 1 + n−1

m , sw(x,u) = n−1
m for any x ∈ A \ {x∗}.

Now, the probability that {x∗} = win( f ,u) is at most the probability that x∗ receives a vote from one of the agents
1,2, . . . ,n − 1, i.e., at most (n − 1)/m. We conclude that the distortion of f at u is at least

dist( f ,u) = 1 + n−1
m

n−1
m · (1 + n−1

m ) + (1 − n−1
m ) · n−1

m

= m

2(n − 1)
+ 1

2
,

hence dist( f ) = Ω(m/n). �
We now turn to our presentation of low-distortion embeddings. It turns out that when the number of agents is at least as

large as the number of alternatives, a huge reduction in the distortion can be achieved using randomized embeddings. If the
number of agents is significantly larger, the distortion can be very close to one. Indeed, consider the following embedding.

Embedding 1 (Naïve randomized embedding into Plurality). Given a utility function u ∈ U , select alternative x ∈ A with proba-
bility u(x).

The following powerful theorem is our main result.

Theorem 4. Let |N| = n � m = |A|, and denote Embedding 1 by f . Then:

1. dist( f ) = O(m2m/n).
2. dist( f ) = O(

√
m ).

3. Let n � 3 and ε(n,m) = 4
√

m ln n
n . If ε(n,m) < 1, then dist( f ) � 1

1−ε(n,m)
.

All three bounds on the distortion are required, since each has values of n and m where its guarantees are stronger
than the others. Asymptotically, the most powerful bound is the one given in Part 1: it guarantees that the distortion of
Embedding 1 is already constant when n = Ω(m ln m), that is, when the number of agents is slightly larger than the number
of alternatives. This is very close to the necessary condition n = Ω(m) for obtaining constant distortion that is implied by
Theorem 3. Part 1 yields a very weak result for the case n = m; in this case, we get by Part 2 that the distortion is O(

√
m ).

Finally, for large values of n we do not find it sufficient to show that the distortion is constant, we want to establish that it
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is almost one. This does not follow from Part 1 due to the constant hidden in the O notation. However, from Part 3 we get
that for, e.g., n � m2, the distortion is 1 + o(1).

We now prove the theorem. We will require several results regarding the sums of random variables.

Lemma 5. Let X1, . . . , Xn be independent heterogeneous Bernoulli trials. Denote by μ the expectation of the random variable X =∑
i Xi . Then (see, e.g., [11] for the different variations on the Chernoff bounds):

1. (Jogdeo and Samuels [9]) Pr[X < �μ�] < 1/2.
2. (Lower tail Chernoff bound) For any δ ∈ [0,1],

Pr
[

X � (1 − δ)μ
]
� exp

(−μδ2/2
)
. (1)

3. (Upper tail Chernoff bound) For any δ � 0,

Pr
[

X � (1 + δ)μ
]
�

(
e

1 + δ

)(1+δ)μ

. (2)

4. For δ � 2e − 1,

Pr
[

X � (1 + δ)μ
]
� 2−(1+δ)μ. (3)

5. For δ < 2e − 1 we can use the simplified inequality

Pr
[

X � (1 + δ)μ
]
� exp

(−μδ2/5
)
. (4)

Proof of Theorem 4. We prove the theorem’s three parts separately. Part 1 is the most straightforward, while Part 2 is
similar but slightly more involved, and the proof of Part 3 is quite different and significantly more complicated.

Proof of Part 1. Let u ∈ U n be a utility profile. First notice that the expected Plurality score of x ∈ A under the embedding
f is sw(x,u). Let x∗ ∈ argmaxx∈A sw(x,u) be an alternative with maximum social welfare. We have that

∑
x∈A sw(x,u) = n;

by the assumption that n � m, it follows that sw(x∗,u) � n/m � 1. By Part 1 of Lemma 5, with probability at least 1/2 it
holds that sc(x∗, f ,u) � �sw(x∗,u)�.

Consider some alternative x ∈ A such that

sw(x,u) <
sw(x∗,u)

2e(4m)2m/n
. (5)

We apply the upper tail Chernoff bound (2) to the random variable sc(x, f ,u) with expectation μ = sw(x,u) using (1 +
δ)μ = �sw(x∗,u)�. By (5) and since �sw(x∗,u)� > sw(x∗,u)/2, we also have 1 + δ > e(4m)2m/n . Therefore,

Pr
[
sc(x, f ,u) �

⌊
sw

(
x∗,u

)⌋]
�

(
1

(4m)2m/n

)�sw(x∗,u)�
�

(
1

(4m)2m/n

)sw(x∗,u)/2

� 1

4m
,

where the last inequality follows since sw(x∗,u) � n/m.
By the union bound, the probability that either sc(x∗, f ,u) < �sw(x∗,u)�, or some alternative x that satisfies (5) has

sc(x, f ,u) � �sw(x∗,u)�, is at most 3/4. Therefore, with probability 1/4 all the winners have social welfare at least
sw(x∗,u)/(2e(4m)2m/n). Hence

dist( f ,u) � sw(x∗,u)

1
4 · sw(x∗,u)

2e(4m)2m/n

= 8e · (4m)2m/n.

Since n � m, we have that 42m/n � 16. It follows that the distortion of f is as announced.

Proof of Part 2. The proof is similar to Part 1. Given u ∈ U n , we once again denote by x∗ the alternative with maximum
social welfare, and we let L ⊂ A be the set of alternatives with social welfare smaller than sw(x∗,u)/(3e

√
m ), that is,

L =
{

x ∈ A: sw(x,u) <
sw(x∗,u)

3e
√

m

}
.

If L = ∅ then the claim follows trivially, hence we can restrict our attention to three cases. In all three cases we demonstrate
that with constant probability no alternative in L is among the winners, that is, with probability bounded away from zero
an alternative with social welfare at least sw(x∗,u)/(3e

√
m ) is elected, which directly yields the bound on the distortion.

Case 1: sw(x∗,u) < 2 and |L| = 1. Since n � m it also holds that sw(x∗,u) � 1 and, hence, by Jogdeo and Samuels the
probability that sc(x∗, f ,u) = 0 is at most 1/2. Let x be the element of L. Since sw(x∗,u) < 2, it also holds that sw(x,u) <

2/(3e
√

m ) and, by Markov’s inequality, we have that the probability that sc(x, f ,u) � 1 is at most 2/(3e
√

m ) < 1/4.
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Case 2: sw(x∗,u) < 2 and |L| > 1. For each i ∈ N , let Xi be a random variable such that Xi = 1 if f (ui) /∈ L, that is, agent i
votes for an alternative not in L. We have that∑

i∈N

Xi =
∑
x/∈L

sc(x, f ,u).

The sum
∑

x/∈L sc(x, f ,u) has expectation at least

m − 2

3e
√

m
· |L| > m − |L| + 1.

By Jogdeo and Samuels (using the fact that the Xi are independent) with probability at least 1/2 it holds that∑
x/∈L sc(x, f ,u) � m − |L| + 1. If so then by the Pigeonhole Principle there exists some alternative x0 ∈ A \ {L} which has

sc(x0, f ,u) � 2.
Now, consider some alternative x ∈ L. We apply Eq. (2) to the random variable sc(x, f ,u) with expectation μ = sw(x,u)

using (1 + δ)μ = 2. Since μ � 2/(3e
√

m ), it holds that 1 + δ > 3e
√

m. We conclude that

Pr
[
sc(x, f ,u) � 2

]
�

(
1

3
√

m

)2

= 1

9m
.

By the union bound the probability that some alternative in L is among the winners is at most (1/9m) ·m +1/2 = 11/18.

Case 3: sw(x∗,u) � 2. By Jogdeo and Samuels, the probability that sc(x∗, f ,u) < �sw(x∗,u)� is at most 1/2. Next we consider
some alternative x ∈ L. We apply (2) to the random variable sc(x, f ,u) with expectation μ = sw(x,u) using

(1 + δ)μ = ⌊
sw

(
x∗,u

)⌋
.

Since

μ <
sw(x∗,u)

3e
√

m
� �sw(x∗,u)�

2e
√

m
,

it holds that 1 + δ > 2e
√

m. We conclude that

Pr
[
sc(x, f ,u) � 2

]
�

(
1

2
√

m

)�sw(x∗,u)�
�

(
1

2
√

m

)2

= 1

4m
.

Similarly to Case 2, we apply the union bound and conclude that the probability that sc(x, f ,u) � sc(x∗, f ,u) for some
x ∈ L is at most (1/4m) · m + 1/2 = 3/4.

Proof of Part 3. Given u ∈ U n we consider the alternative x∗ ∈ A with the maximum social welfare. Denote by L ⊂ A the
set of alternatives with social welfare at most sw(x∗,u)− (

√
2 +√

5 )
√

sw(x∗,u) ln n. We will show that the probability that
there exists x ∈ L such that sc(x, f ,u) � sc(x∗, f ,u) is at most m/n. Specifically, we will establish that the probability that
either

sc
(
x∗, f ,u

)
� sw

(
x∗,u

) −
√

2 sw
(
x∗,u

)
lnn

or

sc(x, f ,u) � sw
(
x∗,u

) −
√

2 sw
(
x∗,u

)
lnn

for some x ∈ L is at most m/n.
We first apply bound (1) to the random variable sc(x∗, f ,u) with δ = √

(2 ln n)/(sw(x∗,u)). Since the expectation of
sc(x∗, f ,u) is sw(x∗,u) we have that

Pr
[
sc

(
x∗, f ,u

)
� sw

(
x∗,u

) −
√

2 sw
(
x∗,u

)
ln n

]
� 1

n
.

Next we consider an alternative x ∈ L and the random variable sc(x, f ,u). This variable has expectation μ < sw(x∗,u) −
(
√

2 + √
5 )

√
sw(x∗,u) ln n. We apply the upper tail Chernoff bound with δ such that

(1 + δ)μ = sw
(
x∗,u

) −
√

2 sw
(
x∗,u

)
ln n.

Clearly, δμ >
√

5 sw(x∗,u) ln n. If δ � 2e − 1, Eq. (3) yields

Pr
[
sc(x, f ,u) � sw

(
x∗,u

) −
√

2 sw
(
x∗,u

)
lnn

]
� 2−(sw(x∗,u)−√

2 sw(x∗,u) lnn ) � 2−(16−4
√

2 ) ln n � 1
n
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where the second inequality follows from the fact that sw(x∗,u) � n/m and since the assumption ε(n,m) < 1 implies that
n/m > 16 ln n.

If δ < 2e − 1, Eq. (4) yields

Pr
[
sc(x, f ,u) � sw

(
x∗,u

) −
√

2 sw
(
x∗,u

)
lnn

]
� exp

(
− (δμ)2

5μ

)
< exp

(
− sw(x∗,u) ln n

μ

)
� 1

n
.

By the union bound, we have that the probability that some of the undesired events happen is at most m/n (there are at
most m such events). Hence, with probability at least 1 − m/n some alternative x ∈ A \ L is the winner, and the expected
score of the worst winner is at least(

sw
(
x∗,u

) − (
√

2 + √
5 )

√
sw

(
x∗,u

)
ln n

)(
1 − m

n

)

= sw
(
x∗,u

)(
1 − (

√
2 + √

5 )

√
ln n

sw(x∗,u)

)(
1 − m

n

)

� sw
(
x∗,u

)(
1 − (

√
2 + √

5 )

√
m ln n

n

)(
1 −

√
m ln n

16n

)

� sw
(
x∗,u

)(
1 −

(√
2 + √

5 + 1

4

)√
m ln n

n

)

� sw
(
x∗,u

)(
1 − 4

√
m ln n

n

)
= sw

(
x∗,u

)(
1 − ε(n,m)

)
.

The second transition holds since n � 3 together with ε(n,m) < 1 imply that

m

n
�

√
m

16n ln n
�

√
m ln n

16n

and, furthermore, sw(x∗,u) � n/m. The third transition follows from the inequality (1 − α)(1 − β) � (1 − α − β) for any
α,β ∈ [0,1]. �

Our final result regarding embeddings into Plurality asserts that the upper bound of O(
√

m ) for the case of n = m, which
follows from Part 2 of Theorem 4, is almost tight. This case is especially interesting since for slightly larger values of n the
distortion is constant.

Theorem 6. Let |N| = n = m = |A|, and denote Embedding 1 by f . Then dist( f ) = Ω(

√
m

ln m ).

Proof. The main idea is the construction of a utility profile with “heavy” (high social welfare) alternatives and “light” (low
social welfare) alternatives; the heavy alternatives have social welfare and score of exactly two, whereas the light alterna-
tives have low social welfare and expected score. However, since there are many light alternatives, with high probability at
least one such alternative has a score of two.

Formally, let t, λ, and k be integers to be defined later. Consider an instance with N = N ′ ∪ N ′′ , where |N ′| = t and
|N ′′| = λ (i.e., n = t + λ). Furthermore, let A = A′ ∪ A′′ , where |A′| = t/2 and |A′′| = kλ/2 (i.e., m = t/2 + kλ/2). It also holds
that m = n, which implies that m = λ(k − 1). We construct a utility profile u ∈ U n as follows. Each x ∈ A′ has utility equal to
1 with respect to the utility functions of exactly two agents in N ′ , that is, for all x ∈ A′ , sw(x,u) = 2. Each x ∈ A′′ has utility
1/k with respect to the utility functions of exactly two of the agents in N ′′ , hence for all x ∈ A′′ , sw(x,u) = 2/k.

The probability that an alternative x ∈ A′′ satisfies sc(x, f ,u) < 2 is 1 − 1
k2 . Moreover, the probability that sc(x, f ,u) < 2

given that a subset other alternatives in A′′ have score less than two is at most 1 − 1
k2 . Therefore (by an implicit application

of the chain rule) the probability that no x ∈ A′′ has score two is at most(
1 − 1

k2

)kλ/2

� exp

(
− λ

2k

)
.

Selecting λ = 2	k ln k
, we have that the probability that no alternative in A′′ has score two is at most 1/k. It follows that
the distortion is at least

2

2 · 1
k + 2

k · (1 − 1
k )

� k

2
.

Clearly m = O(k2 ln k) and, hence, the bound on the distortion follows. �
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3. Embeddings into Approval

Under the Approval rule, each agent approves a subset of the alternatives. Each approved alternative receives one point.
The set of winners includes the alternatives with most points, summed over all the agents.

We must reformulate some of our definitions in order to apply our notions to Approval voting. A deterministic embedding
into Approval is a function f : U → 2A , where 2A is the powerset of alternatives. In words, an agent with a utility function
u approves each of the alternatives in f (u). The (Approval) score of an alternative is redefined to be

sc(x, f ,u) = ∣∣{i ∈ N: x ∈ f (ui)
}∣∣.

A randomized embedding is a function f : U → �(2A). The rest of the definitions (in particular, the definition of distortion)
are the same as before.

3.1. Deterministic embeddings

In Section 2 we have seen that no deterministic embedding into Plurality can achieve distortion better than Ω(m2) (The-
orem 2). As it turns out, better results can be achieved with respect to Approval. Indeed, consider the following Embedding.

Embedding 2 (Deterministic embedding into Approval). Given a utility function u, approve the subset of alternatives x ∈ A such
that u(x) � 1/m.

The following straightforward result establishes that the distortion of this embedding is O(m).

Theorem 7. Let |N| = n, |A| = m, and denote Embedding 2 by f . Then dist( f ) � 2m − 1.

Proof. Let u be a utility profile. Let x ∈ win( f ,u) be a winning alternative, and let x∗ ∈ A be an alternative which maximizes
the social welfare. Alternative x∗ has ui(x∗) < 1/m with respect to n − sc(x∗, f ,u) agents i, and has utility at most one with
respect to sc(x∗, f ,u) agents. Hence,

sw
(
x∗,u

)
< sc

(
x∗, f ,u

) + (
n − sc

(
x∗, f ,u

)) · 1

m

= n

m
+

(
1 − 1

m

)
· sc

(
x∗, f ,u

)

�
(

2 − 1

m

)
· sc(x, f ,u) � (2m − 1) · sw(x,u).

The third transition holds since x is a winning alternative (and, hence, sc(x∗, f ,u) � sc(x, f ,u)) and also has score at least
n/m (since, by the definition of the embedding, at least one alternative is approved by each agent). The last transition
follows from the definition of the embedding, which implies that sc(x, f ,u) � m · sw(x,u). �

Unfortunately, it is impossible to design low-distortion deterministic embeddings into Approval. In fact, the following
theorem asserts that the simple Embedding 2 is asymptotically optimal.

Theorem 8. Let |N| = n � 2, |A| = m � 3, and let f : U → 2A be a deterministic embedding into Approval. Then dist( f ) � (m −1)/2.

Proof. Let f be a deterministic embedding into Approval. Consider the utility function u1 ∈ U where u1(a) = 0, u1(x) =
1/(m − 1) for all x ∈ A \ {a}. We can assume that f (u1) does not approve a and approves at least one x∗ ∈ A \ {a}, otherwise
we get infinite distortion by considering the utility profile where ui ≡ u1 for all i ∈ N . Without loss of generality f (u1)

approves b ∈ A \ {a}.
Now, let u2 ∈ U be defined by u2(a) = 1, u2(x) = 0 for all x ∈ A \ {a} (in particular, u2(b) = 0). We define a utility

profile u ∈ U n by setting ui ≡ u1 for 	n/2
 agents i, and ui ≡ u2 for �n/2� agents i. By the argument above it holds that
b ∈ win( f ,u), but (using the assumption on the size of n and m) it holds that

dist( f ,u) � sw(b,u)

sw(a,u)
� m − 1

2
.

We conclude that dist( f ) � (m − 1)/2. �
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3.2. Randomized embeddings

In the context of deterministic embeddings, we have seen that there is a gap between the distortion of embeddings into
Approval and embeddings into Plurality. It turns out that there is also a huge gap with respect to randomized embeddings,
when the number of agents is very small.

Indeed, consider the randomized embedding f into Approval that, with probability 1/2, approves an alternative with
maximum utility, and with probability 1/2 approves all the alternatives. Further, assume that N = {1,2}, and let u ∈ U 2.
Without loss of generality there exists x∗ ∈ A such that u1(x∗) � ui(x) for all x ∈ A and all i ∈ N . Then clearly, for every
x ∈ A, sw(x,u) � 2 · sw(x∗,u). Moreover, it holds that win( f ,u) = {x∗} with probability at least 1/4. Hence, the distortion
of this embedding is at most eight, i.e., constant. This reasoning can easily be extended to obtain constant distortion with
respect to any constant n. Compare this result with Theorem 3.

However, as before, we are mostly interested in the case of a large number of agents. Crucially, every embedding into
Plurality can also be seen as an embedding into Approval, where for every utility function exactly one alternative is ap-
proved. Hence, the powerful positive result regarding Embedding 1, namely Theorem 4, also holds with respect to Approval.

It is natural to consider the following embedding into Approval.

Embedding 3 (Naïve randomized embedding into Approval). Given a utility profile u ∈ U n , independently approve each alter-
native x ∈ A with probability u(x).

So, in contrast to Embedding 1 into Plurality, under Embedding 3 multiple alternatives can be approved. However, the
expected score of an alternative under both embeddings is identical. This implies (not directly) that Theorem 4, and even
the lower bound given in Theorem 6, apply to Embedding 3 as well.

It remains open whether there is a gap in the distortion of randomized embeddings into Plurality and randomized em-
beddings into Approval when n � m. Interestingly enough, the lower bound of Ω(

√
m/ ln m ) for n = m (Theorem 6) also

holds with respect to some natural embeddings into Approval which may approve multiple alternatives, such as Embed-
ding 4 that is considered in the next section.

4. Experimental results

In this section, we present experimental results concerning representative randomized embeddings into Plurality and
Approval. Our aim is to shed some light on the enigmatic case in which the number of agents is smaller than the number
of alternatives. The main message from our experiments is that efficiency with respect to the distortion can be obtained by
randomized embeddings in this case as well. Recall that our positive result (Theorem 4) does not apply to this case.

We remark that, since the definition of distortion involves all utility profiles with specific numbers of agents and alterna-
tives as well as the expectation of the social welfare of the winning alternative, we should not expect its exact measurement
in our experiments. Instead, we will approximate the distortion of embeddings by considering many utility profiles that are
produced according to carefully selected probability distributions, which can serve as strong adversaries for our embeddings,
and by considering the execution of the embeddings many times on each utility profile. Our experimental setting also al-
lows us to make interesting observations about the efficiency of embeddings on particular probability distributions of utility
profiles; in this context, we will examine distortion measurements that deviate from the standard definition of distortion
(see below) and are specific to particular probability distributions.

In more detail, we consider utility profiles that are produced randomly according to a family of different probability
distributions. The probability distributions are defined as follows for values of parameter τ in [1,+∞).

τ -biased probability distributions. A specific alternative x is identified. For each agent, we pick a random value in the
range [0,1] for each alternative. We multiply the value corresponding to the specific alternative x by τ . These values are
then normalized (so that their sum is unity) in order to compute the utility function of the agent over the alternatives.

We use the term τ -biased utility profiles to refer to utility profiles that are produced randomly according to the τ -biased
probability distribution. Such utility profiles have the following properties:

• The expected social welfare of all alternatives except x is the same.
• The expected social welfare of alternative x is τ times the expected social welfare of any other alternative.

The rationale behind the selection of these probability distributions is that they can challenge our embeddings (by
producing utility profiles that are difficult to handle efficiently) and reveal empirical statements of some generality about
their distortion. Intuitively, the social welfare of an alternative will be concentrated around its expectation. In the extreme
case of τ -biased profiles for high values of τ , most agents will also have a high utility for a particular alternative (i.e.,
alternative x). This alternative probably has the highest social welfare and should be the winner in any low-distortion
embedding. Indeed, our experimental results will verify this observation. On the other hand, in τ -biased utility profiles
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for small values of τ , it may not be apparent that the alternative with the highest social welfare is the one that would
be selected by the voting rule; recall that the number of alternatives is large, the randomized embeddings make random
choices and, furthermore, the number of agents is small. The ability of our embeddings to identify alternatives with high
social welfare (for different values of τ ) will reflect their efficiency in terms of the distortion.

In the experiments presented below we have run Embedding 1 into Plurality on τ -biased utility profiles. We have also
considered the following embedding into Approval which tries to exploit the extra flexibility Approval provides by allowing
each agent to approve any number of alternatives.

Embedding 4. For any agent, pick a value in [0,1] uniformly at random and approve all alternatives (if any) that have utility
higher than this value.

We remark that Embedding 3 could be a natural embedding to consider here but, not surprisingly, the results obtained
are similar to those of Embedding 1. Our upper bound analysis (i.e., the statement and proof of Theorem 4) can be easily
seen to extend to Embedding 4 as well but it does not capture the case in which the number of agents is smaller than the
number alternatives.

In our experiments, the distortion at a utility profile is computed using Definition 1.2 as the average social welfare of the
winner after 1000 executions of the randomized embedding over the maximum social welfare among all alternatives in the
particular profile. Ties among different winning alternatives are broken in favor of the alternative with the minimum social
welfare as Definition 1.2 suggests. The results from a representative set of experiments are depicted in Fig. 1. The four plots
contain results from the application of Embeddings 1 and 4 on τ -biased utility profiles (for values of τ that are powers of 2
and lie between 1 and 128) with 64 or 128 alternatives and 8 or 16 agents. Here, we have used a distortion measure that is
specific to τ -biased utility profiles for a given value of τ and particular numbers of agents and alternatives. More precisely,
for each point in the four plots of Fig. 1, the distortion value was computed as the maximum distortion in 1000 different
τ -biased utility profiles. This gives us a more refined measure of the efficiency of randomized embeddings as a function of
the values of τ .

The results provide information the theoretical analysis cannot provide unless it becomes very detailed and adapted to
the particular probability distributions. In all experiments we have performed with Embedding 1 for Plurality, the distortion
is non-monotonic with respect to τ . There exists a particular value (or range of values) of τ for which the distortion is
maximized (see Fig. 1). The low-distortion values for high values of τ can be easily explained. According to the definition
of τ -biased utility profiles, many agents are expected to have a significantly higher utility for the particular alternative x.
Consequently, Embedding 1 will translate such utilities into a vote for alternative x, and hence x is often selected. For small
values of τ , the social welfare of the alternatives is around the (same, more or less) expectation, and Embedding 1 computes
a winner with social welfare that is not far from the maximum one. τ -biased utility profiles for intermediate values of τ
are the most difficult to handle. However, in all cases the distortion is relatively low.

Interestingly, the experimental results indicate that the behavior of Embedding 4 on τ -biased utility profiles is different.
Our observation for Embedding 1 for high values of τ applies to Embedding 4 as well. On the other hand, Embedding 4
seems to have its highest distortion for small values of τ (unlike Embedding 1, which efficiently handles such utility pro-
files). This is due to the fact that, by its definition, Embedding 4 cannot help an agent distinguish between alternatives that
have comparable utility since (unlike Embedding 1) it may translate the utility function of an agents to approvals for all such
alternatives. This effect almost vanishes as τ increases and, for most values of the parameter τ , Embedding 4 significantly
outperforms Embedding 1, quickly reaching optimal distortion. This last phenomenon is more apparent when the number
of agents is large (compare Figs. 1(c) and 1(d) with Figs. 1(a) and 1(b), respectively) and implies that the extra flexibility of
Embedding 4 is beneficial in this case.

A summary of the results of our experiments with profiles with 64 or 128 alternatives and a number of agents that is a
power of 2 between 2 and 64 or 128, respectively, is depicted in the two plots of Fig. 2. These results are similar in spirit to
our upper bound statements (e.g., Theorem 4) in the sense that the distortion bounds are worst-case among utility profiles
produced according to different probability distributions. Each point in these plots represents the maximum distortion
observed in τ -biased profiles for all different values of τ that are powers of 2 with the particular number of agents and
number of alternatives corresponding to the point. For example, the point of Fig. 2(b) that corresponds to the execution of
Embedding 1 with 16 agents has a distortion value equal to the maximum (i.e., 4.73) among the eight distortion values for
this embedding in Fig. 1(d) (that is obtained for τ = 8). So, the distortion value at each point in the plots of Fig. 2 is the
maximum distortion observed in 8000 different utility profiles. The remaining points have been produced by running the
two embeddings in utility profiles with appropriate parameters.

The results suggest a threshold behavior with respect to the relative performance of the two embeddings: Embedding 1
outperforms Embedding 4 in profiles with small number of agents, whereas the opposite is true when the number of agents
is high. The transition takes place when the number of agents goes from 8 to 16 and pinpoints the threshold at which the
extra flexibility that Approval provides (and Embedding 4 exploits) becomes beneficial. Alternatively, this transition in the
behavior of Embeddings 1 and 4 can be observed by examining the maximum distortion (over all values of τ ) of each
embedding in the four plots of Fig. 1 (and can be explained by the discussion on the behavior of Embedding 4 above).
However, in general, the results indicate that, at least for the particular family of probability distributions of utility profiles,
the distortion of both embeddings is O (m/n). This claim is supported by the 13 pairs of points depicted in Fig. 2 as well as
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Fig. 1. Experiments in profiles with 64 or 128 alternatives and 8 or 16 agents. The distortion is a function of parameter τ which takes as values the powers
of 2 from 1 to 128. Note that the scale of the x-axis is logarithmic.

by other experiments on utility profiles with intermediate numbers of alternatives and agents that are not reported here.
This bound matches asymptotically the theoretical lower bound of Theorem 3 and is superior to the theoretical upper bound
of Theorem 4 (for n = m). The latter is to be expected since the lower bound construction used in the proof of Theorem 3
is unlikely to be produced by the τ -biased probability distributions.

5. Embeddings into Veto

Under the Veto rule, each agent vetoes a single (presumably least preferred) alternative. The set of winners includes all
the alternatives that are vetoed the least number of times. Equivalently, each agent awards one point to all the alternatives
except one, and the alternatives with most points are the winners.

The Veto rule can be interpreted as a scoring rule. Such a rule is defined by a vector of real numbers (α1,α2, . . . ,αm)

with α1 = 1 � α2 � · · · � αm−1 � αm = 0. Let L(A) denote the set of rankings over A. The vote of each agent is an element
of L(A). The number of points awarded by an agent to the alternative ranked in the kth position is αk . Veto then is the
scoring rule defined by (1, . . . ,1,0). Plurality is the scoring rule defined by (1,0, . . . ,0).
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Fig. 2. Summary of experiments in profiles with 64 or 128 alternatives. The distortion is a function of the number of agents (which takes as values the
powers of 2 from 2 to the number of alternatives). Note that the scale in both axes is logarithmic.

In this section we are mostly interested in the Veto rule, due to its low communication costs (log m bits per agent).
However, one can think of other scoring rules with low communication costs, e.g., 2-approval defined by (1,1,0, . . . ,0) or
2-antiapproval defined by (1, . . . ,1,0,0). Hence, we will formulate some of our results for scoring rules in general. Note
that a deterministic embedding into a scoring rule R is a function f : U → L(A), whereas a randomized embedding is a
function f : U → �(L(A)).

5.1. Deterministic embeddings

The Plurality and Veto rules are closely related in the sense that agents must award an equal number of points to
almost all alternatives, and therefore cannot make a distinction in their votes between very desirable and very undesirable
alternatives. However, this turns out to be a more acute problem under Veto, since agents cannot even single out one good
alternative. The following definition allows us to quantify this property.

Definition 9. Let R be a scoring rule with score vector (α1,α2, . . . ,αm) over m alternatives with 1 = α1 � α2 � · · · � αm−1 �
αm = 0. The decisiveness dR of R is defined as dR = m − ∑m

i=1 αi .

Observe that the decisiveness of a scoring rule lies between 1 (for Veto) to m − 1 (for Plurality). Procaccia and Rosen-
schein [13] (implicitly) relate the distortion of the naïve deterministic embedding to decisiveness. The naïve deterministic
embedding simply computes a non-increasing ordering of the alternatives with respect to their utilities, breaking ties among
the alternatives according to a predefined rule (e.g., lexicographically).

Theorem 10. (See Procaccia and Rosenschein [13].) The naïve deterministic embedding into a scoring rule R with decisiveness at most
m − 2 has infinite distortion.

We can extend the above impossibility result to any deterministic embedding.

Theorem 11. Let |N| = n � 1 and |A| = m � 3, and let f : U → A be a deterministic embedding into a scoring rule with α1 = α2 .
Then dist( f ) = ∞.

Proof. Let a ∈ A and u be a utility profile such that for all i ∈ N , ui(a) = 1, and ui(x) = 0 for all x ∈ A \ {a}. Let f be an
embedding into a scoring rule with α1 = α2 = 1. Let y ∈ A \ {a} that is ranked in one of the first two positions of the
ranking f (u). Then, y has a score of n and, hence, y ∈ win( f ,u). Since sw(a,u) = n and sw(y,u) = 0, it follows that the
distortion of f is infinite. �

It follows that for all the scoring protocols that could be of interest due to their low communication requirements,
deterministic embeddings have infinite distortion.
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5.2. Randomized embeddings

First, observe that if n < m − 1, then any randomized embedding into Veto has infinite distortion, for reasons similar to
the deterministic case (Theorem 11). Indeed, consider n agents with utility 1 for alternative x∗ ∈ A and 0 for the remaining
m − 1 alternatives. At least one of these m − 1 alternatives is not vetoed, and hence it is included in the set of winners.
However, for larger values of n it is possible to obtain positive results; we consider the following embedding into any scoring
rule.

Embedding 5 (Randomized embedding into scoring rules). Given a utility function u ∈ U , select an alternative x ∈ A with
probability u(x) to be ranked first; denote the selected alternative by x∗ . Now, complete the ranking at positions 2, . . . ,m
by selecting a random permutation among the alternatives in A \ {x∗}.

For Veto Embedding 5 reduces to the following scheme. As in the general embedding, select an alternative x ∈ A with
probability u(x), and denote the selected alternative by x∗ . Now, the vetoed alternative f (u) is selected uniformly at ran-
dom from A \ {x∗} (that is, each alternative in A \ {x∗} is selected with probability 1/(m − 1)). Interestingly, for Plurality
Embedding 5 reduces to Embedding 1.

We have the following upper bound on the distortion of Embedding 5.

Theorem 12. Let |N| = n � m = |A|, n � 3, and denote by f the Embedding 5 to a scoring rule R with decisiveness dR ∈ [1,m − 1].
Furthermore, let

ε(n,m) = 2m(m − 1)

dR

√
ln n

n
.

If ε(n,m) < 1, then dist( f ) � 1
1−ε(n,m)

.

The proof of this theorem is along similar lines to the proof of Part 3 of Theorem 4. The main difference is that, instead
of using Lemma 5 which applies to sums of Bernoulli trials, we now have to use a more general inequality due to Hoeffding
[8] which applies to sums of independent heterogeneous random variables (taking values in the range [0,1]). We note that,
since this inequality is more general, it yields a weaker bound for Plurality than the one obtained in Part 3 of Theorem 4.

Lemma 13. (See Hoeffding [8].) Let X1, . . . , Xn be independent heterogeneous random variables with Xi ∈ [0,1]. Denote by μ the
expectation of the random variable X = ∑

i Xi . Then for any λ > 0,

Pr[|X − μ| � λ] � exp

(
−2λ2

n

)
.

Proof of Theorem 12. Let λ = 1
2

√
n ln n. Given u ∈ U n , consider the alternative x∗ with maximum social welfare and denote

by L the set of alternatives with social welfare less than sw(x∗,u) − 2λm−1
dR

. We will show that the probability that either

sc
(
x∗, f ,u

)
� E

[
sc

(
x∗, f ,u

)] − λ

or

sc(x, f ,u) � E
[
sc

(
x∗, f ,u

)] − λ

for some x ∈ L is at most m/
√

n.
Using the Hoeffding bound for the random variable sc(x∗, f ,u), we have

Pr
[
sc

(
x∗, f ,u

)
� E

[
sc

(
x∗, f ,u

)] − λ
]
� Pr

[∣∣sc
(
x∗, f ,u

) − E
[
sc

(
x∗, f ,u

)]∣∣ � λ
]
� exp

(
−2λ2

n

)
= 1√

n
.

Now, observe that for any x ∈ A and i ∈ N , the score x receives from agent i when applying f on the utility profile ui is
α1 = 1 with probability ui(x) and α j with probability 1−ui(x)

m−1 for j = 2, . . . ,m. Hence,

E
[
sc(x, f ,u)

] =
∑
i∈N

(
ui(x) · 1 +

m∑
j=2

1 − ui(x)

m − 1
· α j

)

=
∑
i∈N

(
ui(x) + (

1 − ui(x)
)m − dR − 1

m − 1

)

= m − dR − 1
n + dR sw(x,u).
m − 1 m − 1
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Therefore for every alternative x ∈ L it holds that

E
[
sc

(
x∗, f ,u

)] − λ = m − dR − 1

m − 1
n + dR

m − 1
sw

(
x∗,u

) − λ

� m − dR − 1

m − 1
n + dR

m − 1
sw(x,u) + λ

= E
[
sc(x, f ,u)

] + λ.

Using this last observation and the Hoeffding bound for the random variable sc(x, f ,u), we have

Pr
[
sc(x, f ,u) � E

[
sc

(
x∗, f ,u

)] − λ
]
� Pr

[
sc(x, f ,u)

]
� E

[
sc(x, f ,u) + λ

]
� Pr

[∣∣sc(x, f ,u) − E
[
sc(x, f ,u)

]∣∣ � λ
]

� exp

(
−2λ2

n

)

= 1√
n
.

By the union bound the probability that some of the undesirable events happen is at most m/
√

n. Hence, with probability
at least 1 − m/

√
n there is no x ∈ L among the winners. We conclude that the expected social welfare of the worst winner

is at least(
sw

(
x∗,u

) − 2λ(m − 1)

dR

)(
1 − m√

n

)
= sw

(
x∗,u

)(
1 − (m − 1)

√
n ln n

dR · sw(x∗,u)

)(
1 − m√

n

)

� sw
(
x∗,u

)(
1 − m(m − 1)

dR

√
lnn

n

)(
1 − m√

n

)

� sw
(
x∗,u

)(
1 − m(m − 1)

dR

√
lnn

n

)2

� sw
(
x∗,u

)(
1 − 2m(m − 1)

dR

√
lnn

n

)
= sw

(
x∗,u

)(
1 − ε(n,m)

)
.

The first transition follows by substituting λ, the second transition holds since sw(x∗,u) � n/m, the third transition easily
follows by the condition on ε(n,m) using n � 3, and the fourth transition follows from (1 − α)2 � 1 − 2α. This concludes
the theorem’s proof. �

As corollaries, we have that if n/ ln n � 16m2(m − 1)2, then the distortion of Embedding 5 into Veto is at most two. In
addition, for instances with ε(n,m) = o(1), the distortion is at most 1 + o(1).

When n is not much larger than m we can show an exponential lower bound on the distortion of Embedding 5 into Veto
by exploiting the relation to the well-known coupon collector problem (see, e.g., [11]). Indeed, consider an instance with n
agents with utility 1 for a particular alternative x∗ and 0 for all other alternatives. Then, our embedding into Veto should
select equiprobably among all alternatives besides x∗ the one that will not get score 1 (i.e., the one that will be ranked
last). Hence, the question of whether every alternative besides x∗ was ranked last in the preferences of some agent is the
same as the question of whether all m − 1 coupons will be randomly selected after n trials. When n = (m − 1) ln(m − 1)/2
the probability that this happens is exponentially low (i.e., O (exp(−√

n ))) and, therefore, the expected social welfare of
the alternative to be selected will be at most O (exp(−√

n )) and the distortion at least Ω(exp(
√

n )). More generally we
have the following theorem. Note that, in order to keep the exposition simple, we assume that f simply returns the vetoed
alternative (as opposed to a ranking of all the alternatives).

Theorem 14. Let n = |N| � |A| = m, and let f : U → �(A) be a randomized embedding into Veto. Then dist( f ) = Ω(m/
√

n ).

Proof. Let f be a randomized embedding into Veto. Let N = N ′ ∪ N ′′ , where |N ′| = n −λ and |N ′′| = λ, with λ to be defined
later. We define a utility profile u ∈ U n as follows. For all i ∈ N ′ and x ∈ A, ui(x) = 1/m, that is, all the agents in N ′ have
utility 1/m for each alternative. Let x∗ ∈ A be the alternative that has the highest probability of being vetoed under f given
this utility profile, i.e., for all i ∈ N ′ ,

Pr
[

f (ui) = x∗] � Pr
[

f (ui) = x
]
. (6)
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Furthermore, for all i ∈ N ′′ we have ui(x∗) = 1, ui(x) = 0 for all x ∈ A \ {x∗}. Note that sw(x∗,u) = λ + (n − λ)/m, whereas
sw(x,u) = (n − λ)/m for all x ∈ A \ {x∗}.

It follows from Eq. (6) that the probability that x∗ is among the λ + 1 alternatives that are vetoed least by the agents
in N ′ is at most (λ + 1)/m. Therefore with probability at least 1 − (λ + 1)/m there are λ + 1 alternatives that are vetoed
at most as many times as x∗ by N ′ , and at least one of them is not vetoed by the agents in N ′′ as there are only λ such
agents. We conclude that the distortion of f is at least

dist( f ,u) �
λ + n−λ

m
λ+1

m · (λ + n−λ
m ) + (1 − λ+1

m ) · n−λ
m

= λ + n−λ
m

λ+1
m · λ + n−λ

m

.

Taking λ = Θ(
√

n ), we get that dist( f ) � Ω(m/
√

n ). �
Theorem 14 provides a necessary condition n = Ω(m2) in order to obtain constant distortion into Veto, whereas Em-

bedding 1 yields a constant upper bound when n = Θ(m ln m) with respect to Plurality and Approval. Hence, randomized
embeddings into Veto are provably less efficient even when the number of agents is larger than the number of alternatives.

6. Discussion

In this section we discuss a few prominent issues.

6.1. On the interpretation of our results

Interestingly, our technical results deal with embeddings into voting rules and are not directly related to communication,
therefore the results may lend themselves to different interpretations.

Procaccia and Rosenschein [13] motivate their work by arguing that in some systems voting must be used since utilities
cannot be calculated or cannot be compared, even though exact and comparable utilities conceivably exist. This situation
is less common in systems that are populated entirely by computational agents (although bounded rationality may be an
issue), and more common in systems that also involve humans. Procaccia and Rosenschein do assume that the agents rank
the alternatives according to decreasing utility, but this does not require calculating the exact utilities.

In contrast, the randomized embeddings introduced in this paper require the computation of exact utilities. So, we are
dealing with systems (that are presumably populated solely by computational agents) where one could potentially gather
exact utilities and select the best alternative. One possible interpretation of our results is that they can be used to improve
the performance of systems that, by design, are unnecessarily constrained to use voting when utilities could have been
reported, but this is not an approach we wish to advocate. We feel that our interpretation in terms of communication
reduction, as presented in the introduction, provides a robust motivation that ties in closely to the results.

6.2. Relation to work on compact preferences

A significant body of work in AI is devoted to compactly representing preferences. A prominent example is the work on
CP-nets [2], a graphical representation of preferences that employs conditional ceteris paribus (all else being equal) prefer-
ence statements. This representation is often compact and admits efficient algorithms for different inference tasks. Another
example is a recently proposed representation of utility functions using weighted propositional formulas [17]. By consider-
ing different restrictions on the syntax of formulas and the weights one can obtain different representation languages, each
capturing a different class of utility functions.

This line of work proposes to reduce communication and computation burdens by making arguably natural assumptions
regarding the utility functions. In contrast, in this paper we impose no restrictions on the utility functions (with the ex-
ception of the extremely weak normalization assumption, see below); rather, we reduce communication by slightly relaxing
the optimality of the outcome.

6.3. Generality of normalized utilities

It is easy to see that very strong lower bounds would hold without assuming that the utilities are normalized. We
argue though that this assumption is essentially without loss of generality. Indeed, the setting we have in mind (which is
consistent with our motivation and examples) is one where all agents have equal weight in deciding the social quality of
alternatives, and are merely trying to evaluate which alternative is best for the system. For example, we are precluding a
situation where one agent has utility one for x and zero for the rest, and a second agent has utility 1/2 for x and zero for
the rest: if both believe that x is the only reasonable alternative, they would both give that alternative their entire “pool
of points”. In other words, the only real assumption is that agents have equal weight; normalized utilities logically follow.
Note that a similar assumption is typically made in social choice contexts concerning the fair division of a good among
agents with cardinal utilities over parts of the good (see, e.g., [3]); it is assumed that the sum of an agent’s utilities for
every partition of the good is one.
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6.4. Future work

Our notion of embeddings into voting rules is extremely decentralized, that is, the agents cast their votes independently
according to the embedding. On the other extreme, if full coordination is allowed, the distortion would always be one, as
the agents would be able to find out which alternative maximizes social welfare and coordinate their votes in a way that
this alternative is elected (assuming the voting rule is onto the set of alternatives). It would be interesting to investigate a
notion of embedding that allows for partial communication between the agents.

Our strongest positive results hold in settings where the number of agents is larger than the number of alternatives. This
is indeed the case in many environments, notably in political elections. However, one can think of a variety of multiagent
settings where the number of alternatives is larger. Our experimental results shed some light to the distortion of randomized
embeddings into Plurality and Approval in this case. In future work, we would like to achieve a better understanding of the
achievable distortion when n = o(m).

The results in this paper mainly concern three voting rules: Plurality, Approval, and Veto. Certainly, low distortion can
also be achieved using randomized embeddings into any scoring protocol as Theorem 12 indicates. Among others, this
includes k-approval and k-antiapproval voting rules, according to which each agent approves or vetoes k alternatives, re-
spectively; these voting rules require O (k log m) bits to be communicated by each agent and meet the low communication
requirement when k is small. Furthermore, it includes the Borda rule which, in our context, can be defined as follows: each
agent awards 1 − k−1

m−1 points to the alternative ranked in the kth position. Extending this line of work to other prominent
voting that either have low communication requirements, such as Plurality with Runoff or Single Transferable Vote [5], or
are based on pairwise comparisons, such as Copeland or Maximin, could prove challenging but rewarding.

Finally, it is interesting to think about maximizing social welfare via methods that require minimal communication
and are not necessarily constrained by voting rules. This question is related to work in the theory of computer science
community on streaming algorithms (see, e.g., [4,6]).
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