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�e design and analysis of randomized approximation algorithms has traditionally focused on the expected

quality of the algorithm’s solution, while largely overlooking the variance of this solution’s quality — partly

because such an algorithm typically gives rise to a deterministic algorithm with the same approximation

ratio through derandomization. But in algorithmic mechanism design, there is a known separation between

deterministic and randomized strategyproof mechanisms, that is, the risk associated with randomization is

sometimes inevitable. We are therefore interested in understanding the approximation-variance tradeo�

in algorithmic mechanism design. As a case study, we investigate this tradeo� in the paradigmatic facility

location problem. When there is just one facility, we observe that the social cost objective is trivial, and

derive the optimal tradeo� with respect to the maximum cost objective. When there are multiple facilities,

the main challenge is the social cost objective, and we establish a surprising impossibility result: under mild

assumptions, no smooth approximation-variance tradeo� exists.

1 INTRODUCTION
Expectation-variance analysis has long been viewed as one of the fundamental approaches to

reasoning about risk aversion. In the language of modern portfolio theory [Markowitz, 1952], given

two portfolios (distributions over outcomes) with the same expected return, an investor would

prefer the one with lower risk (variance); he may prefer a portfolio with higher risk only if that risk

is o�set by su�ciently higher expected returns. �e optimal investment depends on the investor’s

individual level of risk aversion, as well as on the optimal tradeo� between expected returns and

risk.

Given the ubiquity of expectation-variance analysis in economics and �nance, it may seem

surprising that research in randomized algorithms measures performance almost exclusively

in terms of expectation. In particular, the approximation ratio of randomized algorithms for

minimization problems is, by de�nition, the worst-case (over instances) ratio of the algorithm’s

expected cost (where the expectation is taken over the algorithm’s coin �ips), and the cost of the

optimal solution. �is focus on expectation is perhaps best explained by the fact that we do not know

whether P = BPP or P ( BPP, that is, as far as we know, it might be the case that all polynomial-

time randomized algorithms can be derandomized. In the case of randomized approximation

algorithms, derandomization yields a deterministic algorithm with the same approximation ratio.

Another explanation is that it is possible to reduce the variance of a randomized algorithm by

running it multiple times, and taking the best result.

Naturally, the expectation-centric approach has carried over to algorithmic mechanism design

and the study of strategyproof mechanisms for game-theoretic versions of optimization problems,

that is, mechanisms such that no player can bene�t from misreporting his private information. �is

can be traced back to the eponymous paper of Nisan and Ronen [2001], who study randomized

strategyproof approximation mechanisms for a scheduling problem, using the standard (expectation-

based) de�nition of approximation.

However, in contrast to the purely algorithmic se�ing, there is a known separation between

deterministic and randomized strategyproof mechanisms in algorithmic mechanism design. For

example, in se�ings with monetary transfers, Nisan and Ronen already establish that randomized
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strategyproof scheduling mechanisms provide a be�er approximation ratio than any strategyproof

deterministic mechanism; and Dobzinski and Dughmi [2013] do the same for multi-unit auctions.

In se�ings without money, this separation is even more prevalent; it is exhibited, e.g., in facility

location [Procaccia and Tennenholtz, 2013], approval voting [Alon et al., 2011], and kidney ex-

change [Ashlagi et al., 2015, Caragiannis et al., 2011]. Moreover, choosing the best result among

multiple executions of a randomized strategyproof mechanism is not generally strategyproof.

To summarize, in the presence of randomization, an analysis of the expectation-variance tradeo�

is a prerequisite for optimal decision making under risk aversion; and randomization is provably

bene�cial (sometimes even indispensable) in algorithmic mechanism design. �ese observations

highlight the importance of developing a broad understanding of expectation-variance tradeo�s in

algorithmic mechanism design. Speci�cally, we focus on strategyproof approximation mechanisms,

where minimizing cost (essentially) amounts to minimizing the worst-case approximation ratio.

Fixing an optimization problem, our generic question is therefore:

Given α ∈ R+, what is the optimal approximation ratio achievable by a strategyproof

randomized mechanism whose variance is at most α?

Note that this question has a nontrivial answer when instantiated in any algorithmic mechanism

design se�ing where randomized mechanisms outperform deterministic ones. �at is why we view

this paper as potentially initiating a new research agenda in algorithmic mechanism design (caveats

apply, see §1.3).

1.1 The Facility Location Problem
We explore the foregoing question in the context of the facility location problem. �e reason for this

choice is twofold. First, facility location is the original and paradigmatic example of approximate

mechanism design without money [Procaccia and Tennenholtz, 2013]. �is agenda focuses on

problems where monetary transfers are not allowed, which is why the need for approximation

typically stems from strategic considerations (the optimal solution is not strategyproof) rather than

computational complexity. �e prominence of facility location has motivated many papers [Alon

et al., 2010, Cheng et al., 2013, Feldman et al., 2016, Filos-Ratsikas et al., 2015, Fotakis and Tzamos,

2010, 2013a,b, Lu et al., 2010, 2009, Nissim et al., 2012, Procaccia and Tennenholtz, 2013, �ang,

2010, Todo et al., 2011, Wilf and Feldman, 2013, Zou and Li, 2015], and, consequently, at this point

we have an excellent technical grasp of the problem (although major questions remain open). We

directly leverage results from multiple previous papers [Fotakis and Tzamos, 2013a,b, Lu et al.,

2010, Procaccia and Tennenholtz, 2013] to obtain our results. Second, the basic facility location

problem is extremely simple. �is makes it especially suitable for investigating new ideas in

algorithmic mechanism design, because one can easily focus on the novel elements (which, in our

case, immediately make the problem quite rich).

On a slightly more technical level, an instance of the facility location problem consists of n
players who are located on the real line; xi denotes the location of player i . A mechanism f takes

the vector of player locations x ∈ Rn as input, and outputs a vector of k facility locations y ∈ Rk .

�e cost of player i is his distance from the nearest facility, that is, min`∈[k] |xi − y` |. �ere are

two natural minimization objectives: the utilitarian objective of social cost, which is the sum of

individual costs; and Rawlsian objective of maximum cost, which is, obviously, the maximum

individual cost.

To understand the need for approximation, note that the optimal solution for the case of k = 1

(a single facility), and the maximum cost objective, is to place the facility at the average of the

le�most and rightmost player locations, that is, at (mini xi +maxi xi )/2. However, this solution is

not strategyproof because, say, the rightmost player can drag the facility towards his true location
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by reporting a location that is further to the right, thereby decreasing his cost. �e approximation

ratio of a strategyproof mechanism, therefore, quanti�es the solution quality that must inevitably

be sacri�ced in order to achieve strategyproofness. As discussed above, we wish to reexamine the

optimal approximation ratio achievable by (randomized) strategyproof mechanisms, subject to an

upper bound on variance.

1.2 Our Results
In §3, we study the case of a single facility. For the social cost objective, placing the facility on the

median reported location is strategyproof, optimal, and deterministic (so the variance of the social

cost is 0). We focus, therefore, on the maximum cost objective.

We de�ne a family of mechanisms, parameterized by α ∈ [0, 1/2], which includes the Left-Right-

Middle (LRM) Mechanism of Procaccia and Tennenholtz [2013] as a special case. Informally, given

a location pro�le x ∈ Rn , the Generalized-LRMα Mechanism chooses uniformly at random among

four potential facility locations: le�most player location, rightmost location, and two locations

whose distance from the optimal solution depends on α . We prove:

�eorem 3.3 (informally stated). For all α ∈ [0, 1/2], Generalized-LRMα is a (group) strat-

egyproof mechanism for the 1-facility location problem. Moreover, on location pro�le x ∈ Rn , the
expectation of its maximum cost is (3/2 + α ) · opt(x) (that is, its approximation ratio is 3/2 + α ), and
the standard deviation of its maximum cost is (1/2 − α ) · opt(x).

�eorem 3.3 is especially satisfying in light of the next theorem — our �rst major technical result

— which implies that Generalized-LRM(α ) gives the optimal approximation-variance tradeo� for

the maximum cost objective.

�eorem 3.4 (informally stated). For any strategyproof mechanism for the 1-facility location

problem with the maximum cost objective, given a location pro�le x ∈ Rn , if the mechanism’s

maximum cost has standard deviation at most (1/2 − α ) · opt(x), then its expected maximum cost is

at least (3/2 + α ) · opt(x). In other words, the sum of expectation and standard deviation is at least

2 · opt(x).

In §4, we explore the case of multiple facilities. �is time it is the maximum cost objective that is

less challenging: We observe that the best known approximation ratio for any number of facilities

k ≥ 2 is given by a randomized mechanism of Fotakis and Tzamos [2013b], which (miraculously)

happens to have zero variance.

Next we consider the social cost objective, and things take a turn for the strange: Our second

major result asserts that, in this se�ing, a “reasonable” approximation-variance tradeo� simply

does not exist, even when there are just two facilities.

�eorem 4.1 (very informally stated). For the 2-facility location problem with the social cost

objective, there is no family of mechanisms fθ for every θ ∈ [0, 1] that satis�es two mild technical

conditions, and smoothly interpolates between zero variance and constant approximation ratio, i.e.,

which satis�es the following properties: (i) f0 has a constant approximation ratio, (ii) the variance

of the social cost decreases monotonically with θ , down to zero variance at f1, and (iii) fθ changes

continuously with θ .

Importantly, for the case of 2 facilities, deterministic strategyproof mechanisms are severely

limited [Fotakis and Tzamos, 2013a], but a randomized strategyproof 4-approximation mechanism

is known [Lu et al., 2010]. Our initial goal was to provide an approximation-variance tradeo� with

this mechanism on one end, and a bounded deterministic mechanism on the other, but surprisingly,

�eorem 4.1 rules this out.
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1.3 Related Work
We are aware of only a single paper in algorithmic mechanism design that directly studies vari-

ance [Esfandiari and Kortsarz, 2016], in the context of kidney exchange. In contrast to our paper, it

does not investigate the tradeo� between variance and approximation. Rather, the main result is a

mechanism whose approximation ratio matches that of a mechanism of Ashlagi et al. [2015], but

has lower variance.

Bhalgat et al. [2012] study multi-unit auctions with risk averse sellers, where risk aversion is

modeled as a concave utility function. �ey design polynomial-time strategyproof mechanisms

that approximate the seller’s utility under the best strategyproof mechanism. �e results depend

on the notion of strategyproofness in question, and whether the buyers are also risk averse; in one

case Eso and Futó [1999] have previously shown how to achieve the maximum utility. �is work

is di�erent from ours in many ways, but one fundamental di�erence is especially important to

point out: �e goal of Bhalgat et al. [2012] is to achieve utility as close as possible to that of the

optimal strategyproof mechanism; in principle it is possible to achieve an approximation ratio of 1

by running the optimal mechanism itself (which incorporates the concave utility function of the

seller) — the obstacle is computational e�ciency. Crucially, there is no tradeo� in their se�ing. In

contrast, in our se�ing the benchmark is the unconstrained optimum, and the smaller the allowed

variance, the worse our approximation becomes; our goal is to quantify this tradeo�. Relatedly,

Sundararajan and Yan [2017] also endow a risk-averse seller with a concave utility function, and

seek to simultaneously provide an approximation to the optimal utility of any possible seller,

independently of his speci�c utility function.

Further a�eld, there is a body of work in auction theory that studies optimal auctions for risk

averse buyers [Bhalgat et al., 2012, Dughmi and Peres, 2012, Fu et al., 2013, Maskin and Riley, 1984].

See §5 for a discussion of our problem with risk averse players.

2 NOTATION AND PROBLEM DEFINITION
An input to a k-facility location game consists of a set [n] = {1, . . . ,n} of players, with each player

i associated with a point xi on the real line. For a location vector x ∈ Rn , we are interested in a

few special points and distances: lt(x) , mini xi is the le�most location in x; rt(x) , maxi xi is

the rightmost location in x; diam(x) , rt(x) − lt(x) is the distance between them; and mid(x) =
(lt(x) + rt(x))/2 is the midpoint between them.

On input vector x ∈ Rn , a randomized mechanism f outputs a distribution over k-tuples of

output locations (not necessarily selected from the input locations {xi }
n
i=1

). For k = 1 the cost

of a location y to player i at location xi is his distance, cost(y, xi ) , |y − xi |. More generally,

for k ≥ 1, the cost of a set of k locations Y = {y1,y2, . . . ,yk } to a player i at location xi is the

minimum distance between xi and Y ; that is, cost(Y ,xi ) , miny∈Y {|y − xi |}. On input x the cost of

a mechanism f to player i at xi is the expected cost to i of the chosen set of locations Y according

to the distribution f (x); that is, cost( f (x),xi ) , EY∼f (x)[cost(Y ,xi )].
Players seek to minimize their cost, and will misreport their location if this is likely to decrease

their cost. We will therefore study mechanisms that compare favorably with the best set of k
locations for the given input and objective (more on this later), while eliciting truthful preferences

from the players. �is notion of truthfulness is formalized in the following two de�nitions.

De�nition 2.1. We say a mechanism f is strategyproof, or SP for short, if for all x ∈ Rn , and all
x ′i ∈ R, cost( f (x),xi ) ≤ cost( f (x−i ,x ′i ),xi ).
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In words, under an SP mechanism, for every location vector x and player i , the (expected) cost

su�ered by i is minimized when i truthfully reports xi . �e following is a stronger, and more

desirable property, disallowing collusion.

De�nition 2.2. We say a mechanism f is group strategyproof, or GSP for short, if for all x ∈ Rn ,
S ⊆ [n], and x′S ∈ R

|S |
, there exists i ∈ S such that cost( f (x),xi ) ≤ cost( f (x−S , x′S ),xi ).

In words, for every location vector x and subset of players S , any manipulation by S cannot make

all the players in S strictly be�er o�.

Optimization objectives. Two minimization objectives are of primary interest when considering

facility location games, namely that of maximum cost (in a sense maximizing fairness) and that of

social cost (maximizing the overall welfare of all players). �e maximum cost of a set of locations

Y to a set of n players with location vector x ∈ Rn is simply the maximum cost over all players

mc(Y , x) , maxi {cost(Y , xi )}, whereas the social cost is the sum of the players’ costs, i.e., sc(Y , x) ,∑
i cost(Y , xi ). �e maximum cost and social cost of a randomized mechanism f on input x are the

expectation of these values over the distribution given by f , that is, over Y ∼ f (x).

Approximation. As noted in Section §1, in some cases the optimal solution is not strategyproof;

the notion of worst-case (multiplicative) approximation ratio allows us to quantify to what degree

the optimality of the solution is sacri�ced to obtain strategyproofness.

De�nition 2.3. We say a mechanism f is α-approximate with respect to the maximum/social

cost if on any input vector x, its expected maximum/social cost C is at most α times the optimal

maximum/social cost, opt(x). �at is, E[C] ≤ α · opt(x).

3 ONE FACILITY: THE OPTIMAL TRADEOFF
In this section we consider the one-facility game. Let us �rst brie�y discuss the social cost objec-

tive. As observed by Procaccia and Tennenholtz [2013], selecting the median
1

is an optimal GSP

mechanism for this objective. (�e proof of optimality and group strategyproofness is le� as a very

easy exercise for the reader.) As the median is a deterministic mechanism, the variance of its social

cost is zero. It follows that the approximation-variance tradeo� is a nonissue in one-facility games

with the social cost objective. We therefore focus in this section on the maximum cost objective.

3.1 Upper Bound
Our starting point is the optimal SP mechanism for the maximum cost, without variance constraints:

the Left-Right-Middle (LRM) Mechanism of [Procaccia and Tennenholtz, 2013]. �is simple

mechanism selects lt(x) with probability 1/4, rt(x) with probability 1/4, and the optimal solution

mid(x) — whose maximum cost is opt(x) = diam(x)/2 — with probability 1/2 (see Figure 1). �e

approximation ratio of the mechanism is clearly 3/2: with probability 1/2 it selects one of the

extreme locations, which have maximum cost diam(x) = 2opt(x); and with probability 1/2 it selects

the optimal solution. Why is this mechanism SP? In a nutshell, consider a player i ∈ N ; he can only

a�ect the outcome by changing the position of lt(x) or rt(x). Assume without loss of generality that

i reports a location x ′i to the le� of lt(x), such that lt(x) − x ′i = δ > 0. �en the le�most location

moves away from xi by exactly δ , and that location is selected with probability 1/4. On the other

hand, the midpoint might move towards xi , but it moves half as fast, that is, i might gain at most

δ/2 with probability 1/2 — and the two terms cancel out. �is argument is easily extended to show

that LRM is GSP (in fact, the proof of �eorem 3.3 rigorously establishes a more general claim).

1
Take the le� median when the number of players is even.
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Furthermore, even if we just impose strategyproofness, no mechanism can give an approximation

ratio be�er than 3/2 for the maximum cost [Procaccia and Tennenholtz, 2013].

A �rst a�empt: The convexp Mechanism. On a location vector x ∈ Rn , the LRM Mechanism

has variance opt(x)2/4, or, equivalently, standard deviation opt(x)/2. Given a smaller variance

“budget”, how would the approximation ratio change? �e most natural approach to reducing

the variance of the LRM Mechanism is to randomize between it and the optimal deterministic

(G)SP mechanism, which gives a 2-approximation for the maximum cost by simply selecting

lt(x). Speci�cally, we select lt(x) with probability 1 − p ≥ 0, and with probability p follow LRM

(see Figure 1). �is is a special case of a general mechanism, which randomizes between the

optimal deterministic mechanism and the optimal randomized mechanism. We call this mechanism

convexp , and analyze it in some generality in Appendix A. For the speci�c problem in question,

this mechanism yields the following result.

Corollary 3.1 (of �eorem A.2). Let X be the maximum cost of convexp on input x. �en,

E[X ] + std(X ) = *
,
2 −

p

2

+

√(
1 −

p

2

)
·
p

2

+
-
· opt(x).

In particular, if p , 0, 1 then E[X ] + std(X ) > 2 · opt(x). As we shall see in Section 3.1, this

approximation to standard deviation tradeo� is suboptimal.

It is worth noting that another natural approach — modifying LRM by increasing the probability

of each of the two extreme points to q ∈ [1/4, 1/2], and decreasing the probability of the midpoint

to 1 − 2q — turns out to be equivalent to convexp for p = 4q − 1. Indeed, the former mechanism is

just a symmetrized version of convexp .

The optimal mechanism. In retrospect, the extension of LRM that does achieve the optimal

approximation-variance tradeo� is no less intuitive than the ones discussed earlier. �e idea is

to think of mid(x), which is selected by LRM with probability 1/2, as two points, each selected

with probability 1/4. �ese two points can then be continuously moved at equal pace towards the

extremes (see Figure 1). In what follows, this mechanism is de�ned formally.

De�nition 3.2. �e Generalized-LRMα Mechanism is parameterized by α ∈ [0, 1/2]; on lo-

cation vector x, Generalized-LRMα outputs a point y chosen uniformly at random from the set

{lt(x),mid(x) − α · diam(x), mid(x) + α · diam(x), rt(x)}.

�e next theorem presents the properties satis�ed by Generalized-LRMα .

lt(x) mid(x) rt(x)

LRM

Convex
1/2

Generalized-LRM
1/4

Fig. 1. Illustration of the three randomized mechanisms. The balls’ radii correspond to their points’ probabili-

ties of being selected.
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�eorem 3.3. For all α ∈ [0, 1/2], Generalized-LRMα is a GSP mechanism for one-facility games.

Moreover, if X is the random variable corresponding to the maximum cost of the mechanism on input

x, then E[X ] = (3/2 + α ) · opt(x) and std(X ) = (1/2 − α ) · opt(x).

Proof. Table 1 summarizes the maximum cost for each possible y that Generalized-LRMα
outputs (recall that opt(x) = diam(x)/2). Inspecting this table we �nd that indeed the expectation

satis�es E[X ] =
(

3

2
+ α

)
· opt(x). Given E[X ] and our table of X given y, we see that the variance

is Var(X ) =
(

1

2
− α

)
2

· opt(x)2, and so std(X ) =
(

1

2
− α

)
· opt(x), as claimed.

Table 1. Maximum cost of Generalized-LRMα for its di�erent choices of y.

y arg maxxi ∈x |y − xi | X = maxxi ∈x |y − xi |

mid(x) − α · diam(x) rt(x) (1 + 2α ) · opt(x)
mid(x) + α · diam(x) lt(x) (1 + 2α ) · opt(x)

lt(x) rt(x) 2 · opt(x)
rt(x) lt(x) 2 · opt(x)

To establish that Generalized-LRMα is GSP, suppose a group of players S ⊆ [n] misreport their

locations, resulting in a di�erent location vector x′. Denote∆L , lt(x)−lt(x′) and∆R , rt(x′)−rt(x).
Note that ∆L and ∆R may be positive for any misreporting group S ⊆ [n], but for ∆L (or ∆R ) to be

negative requires the le�most (respectively, the rightmost) player in [n] to be in S . By considering

the cases given by the signs of ∆L and ∆R , we show that for any values of ∆L,∆R , there is some

misreporting player i ∈ S whose cost does not decrease.

Case 1: ∆L,∆R ≥ 0. Let zL , mid(x) −α · diam(x) and zR , mid(x) +α · diam(x) and let z ′L, z
′
R be

de�ned analogously for the misreported location vector x′. �en, for any player location xi (clearly

xi ∈ [lt(x), rt(x)]) we have

cost( f (x),xi ) =
1

4

· ((xi − lt(x)) + (rt(x) − xi ) +|zL − xi | + |zR − xi |),

cost( f (x′),xi ) =
1

4

· ((xi − lt(x) + ∆L ) + (rt(x) − xi + ∆R ) +|z ′L − xi | + |z
′
R − xi |).

But by the triangle inequality, we �nd that

|z ′L − xi | ≥ |zL − xi | −
�����
∆R − ∆L

2

− α (∆L + ∆R )
�����
,

|z ′R − xi | ≥ |zR − xi | −
�����
∆R − ∆L

2

+ α (∆L + ∆R )
�����
.

For α ∈ {0, |∆R−∆L |
2(∆L+∆R )

, 1

2
}, it is easily veri�ed that the implied lower bound on |z ′L − xi | + |z

′
R − xi | is

at least |zL − xi | + |zR − xi | − (∆L + ∆R ). Furthermore, as this lower bound is linear in α in the two

ranges de�ned by these values, the same holds for all α ∈ [0, 1

2
]. Pu�ing the above together we get

cost( f (x′),xi ) ≥ cost( f (x),xi )) + 1

4
· (∆L + ∆R − (∆L + ∆R )) ≥ cost( f (x),xi ).

Case 2(a): ∆L < 0 and ∆R ≥ 0. As observed above, for ∆L to be negative the le�most player must

be in the deviating set S , but this player cannot gain from this change, and in fact only stands to

lose from such a change, as all four points in the support of the mechanism’s output move further

away from the le�most player’s location.

Case 2(b): ∆L ≥ 0 and ∆R < 0. �is is symmetric to case 2(a) above.
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Case 3: ∆L,∆R < 0. In this case the mechanism outputs a location y ∈ [lt(x ′), rt(x ′)] ⊆
[lt(x), rt(x)] with probability one, and by the triangle inequality |rt(x) − y | + |y − lt(x) | = diam(x).
�us, by linearity of expectation, cost( f (x′), lt(x)) + cost( f (x′), rt(x)) = diam(x). By the same

argument cost( f (x), lt(x)) + cost( f (x), rt(x)) = diam(x). Consequently, either

cost( f (x′), lt(x)) ≥ cost( f (x), lt(x)) or cost( f (x′), rt(x)) ≥ cost( f (x), rt(x)).

But for ∆L and ∆R to both be negative, both the le�most and rightmost players must be in the

deviating set S , and so some player in S does not gain from S misreporting their locations. �

3.2 Matching Lower Bound
We are now ready to present our main technical result for the single-facility location problem: a

lower bound for the expectation-variance tradeo� matching the upper bound of �eorem 3.3.

�eorem 3.4. For all α ∈ [0, 1/2], no SP mechanism for one-facility location games which is (3/2+α )-
approximate for maximum cost minimization has standard deviation of maximum cost less than

(1/2 − α ) · opt(x) on every location vector x.

In our proof we �x some SP mechanism f . We will consider inputs of the form x = (l , r ),
where l ≤ r , that is, two-player inputs; this is without loss of generality as the two extreme player

locations always de�ne the maximum cost.
2

�roughout the remainder of this section, we denote

by Y (x) ∼ f (x) the random variable corresponding to the location of the facility output by the

mechanism f on input x . We write Y = Y (x), whenever the input x is clear from context. �e

following two de�nitions will prove useful in our proof of �eorem 3.4.

De�nition 3.5. Given an instance x = (l , r ) and a “gap” t , the normalized leakage of (l , r ) with
relaxation parameter t is

Λ(l , r , t ) , E

[ �����
Y −

l + r

2

�����

�����
Y < (l + t , r − t )

]
Pr [Y < (l + t , r − t )] ·

(
r − l

2

)−1

.

Intuitively, Λ(l , r , t ) is the contribution of probabilities outside (l + t , r − t ) to the expected

distance from the facility to mid(x) = l+r
2

, normalized by opt(x) = r−l
2

.

De�nition 3.6. �e le�- and right-normalized distance of an instance (l , r ) are de�ned by

dL (l , r ) , E[|Y − l |] ·

(
r − l

2

)−1

,

dR (l , r ) , E[|Y − r |] ·

(
r − l

2

)−1

.

By the triangle inequality, f satis�es dL (l , r ) + dR (l , r ) ≥ 2. Moreover, as we may safely assume

that f is at worst 2-approximate, we also have dL (l , r ),dR (l , r ) ≤ 2, and so dL (l , r ) + dR (l , r ) ≤ 4.

3.2.1 Core Lemma. In this section we state and prove the core lemma underlying the proof of

�eorem 3.4, given below.

Lemma 3.7. For all δ > 0 and t ∈ (0, 1/2) there exists some input x = (l , r ), such that

Λ(l , r , t (r − l )) ≥
1

2

− δ .

2
�e extension to more than two players is almost immediate, as we can identify more than one player with either extreme

location, using Lemma B.2.
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Assume for the sake of contradiction that the lemma does not hold; then (throughout this section)

we can �x some δ > 0 and 0 < t < 1

2
such that for all (l , r ),

Λ(l , r , t (r − l )) <
1

2

− δ . (1)

We begin by studying local properties of normalized leakage. �e inputs of interest are given in

the following de�nition.

De�nition 3.8. A gadgetG with parameters l , r and o�set x ≤ r −l is a set of three 2-player instances,

G (l , r ,x ) , {(l , r ), (l + x , r ), (l , r − x )}.

Lemma 3.9. For a gadget G (l , r ,x ) where x ≤ t (r − l ),

dL (l , r ) + dR (l , r ) ≥
(
dL (l + x , r ) + dR (l , r − x )

)
·

(
1 +

x

r − l − 2x

)
−

x

r − l − 2x
·
(
2 − 4δ

)
.

Proof. Let Y ∼ f (l , r ) be the location output by mechanism f on input (l , r ). By strategyproof-

ness of f , the le� player in (l + x , r ) will not deviate to (l , r ), nor will the right player in (l , r − x ).
�us,

r − l − x

2

· dL (l + x , r ) ≤ E
[���Y − l − x

���
]
,

r − l − x

2

· dR (l , r − x ) ≤ E
[���Y − r + x

���
]
.

Adding the two inequalities we obtain

r − l − x

2

· (dL (l + x , r ) + dR (l , r − x )) ≤ E
[���Y − l − x

��� +
���Y − r + x

���
]
. (2)

We focus on the right-hand side of the above expression, E
[���Y − l − x

��� +
���Y − r + x

���
]
, conditioned

on the events I and O , corresponding to Y ∈ (l + x , r − x ) and Y < (l + x , r − x ). �at is, whether or

not Y is inside or outside the range (l + x , r − x ). For the la�er case, we rewrite the de�nition of

normalized leakage,

Λ(l , r ,x ) = E

[�����
Y −

r + l

2

�����
| O

]
· Pr[O] ·

(
r − l

2

)−1

.

By the triangle inequality, this yields

E
[
|Y − l − x ��� +

���Y − r + x
��� | O

]
· Pr[O] = 2 · E

[�����
Y −

r + l

2

�����
| O

]
· Pr[O]

= (r − l ) · Λ(l , r ,x ). (3)

For the former case, Y ∈ (l + x , r − x ), again by the triangle inequality we have that

E
[���Y − l − x

��� +
���Y − r + x

��� | I
]
= r − l − 2x ,

and similarly E
[���Y − l

��� +
���Y − r

��� | I
]
= r − l . We therefore have

E
[���Y − l − x

��� +
���Y − r + x

��� | I
]
=
r − l − 2x

r − l
· E

[���Y − l
��� +

���Y − r
��� | I

]
. (4)

In order to bound the above expectation conditioned on I , we consider the same expectation

conditioned on I ’s complement,O . Now, for Y ∈ [l , r ] we have 2 · |Y − l+r
2
| ≤ r − l = |Y − l |+ |Y −r |.

On the other hand, for Y < [l , r ] we have that 2 · |Y − l+r
2
| = |Y − l | + |Y − r |. �erefore we �nd that

2 · E

[�����
Y −

l + r

2

�����
| O

]
≤ E

[���Y − l
��� +

���Y − r
��� | O

]
. (5)
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Relating the above expressions to normalized distances, we note that by the law of total expecta-

tion, (
dL (l , r ) + dR (l , r )

)
·
r − l

2

=
∑

E∈{I,O }

E
[���Y − l

��� +
���Y − r

��� | E
]
· Pr[E]. (6)

�erefore, using Equations (5) and (6), and again relying on the de�nition of Λ(l , r ,x ), we obtain

E
[���Y − l

��� +
���Y − r

��� | I
]
· Pr[I ] ≤

(
r − l

2

)
·
(
dL (l , r ) + dR (l , r )

)
− 2 · E

[�����
Y −

l + r

2

�����
| O

]
· Pr[O]

=

(
r − l

2

)
·
(
dL (l , r ) + dR (l , r ) − 2 · Λ(l , r ,x )

)
. (7)

Concluding the above discussion, we �nd that

E
[���Y − l − x

��� +
���Y − r + x

���
]
=

∑
E∈{I,O }

E
[���Y − l − x

��� +
���Y − r + x

��� | E
]
· Pr[E]

≤ (r − l ) · Λ(l , r ,x ) +
r − l − 2x

2

·
(
dL (l , r ) + dR (l , r ) − 2 · Λ(l , r ,x )

)
=
r − l − 2x

2

·
(
dL (l , r ) + dR (l , r )

)
+ 2x · Λ(l , r ,x )

<
r − l − 2x

2

·
(
dL (l , r ) + dR (l , r )

)
+ 2x ·

(
1

2

− δ
)
,

where the second transition follows from Equations (3), (4), and (7), and the last transition follows

from Λ(l , r ,x ) ≤ Λ(l , r , t (r − l )),3 and from Equation (1).

Combining Equation (2) with the foregoing upper bound on E[
���Y − l −x

���+
���Y − r +x

���], we obtain(
dL (l + x , r ) + dR (l , r − x )

)
·

(
1 +

x

r − l − 2x

)
≤ dL (l , r ) + dR (l , r ) +

x

r − l − 2x
·
(
2 − 4δ

)
.

�e lemma follows. �

Next, we study global properties of normalized leakage. We de�ne an alignment of instances to

be a set of instances with the same lengths and a certain o�set. Formally:

De�nition 3.10. An alignment is de�ned by

A(l , r ,x ,n) , {(l , r ), (l + x , r + x ), . . . , (l + (n − 1)x , r + (n − 1)x )}.

We let (lj , r j ) = (l + (j − 1)x , r + (j − 1)x ) denote the j-th instance in alignment A(l , r ,x ,n) when the

context is clear.

De�nition 3.11. �e average distance of an alignment A = A(l , r ,x ,n) is de�ned to be

d (A) ,
1

n

n∑
j=1

(dL (lj , r j ) + dR (lj , r j )).

As we noted before, for any input x = (l , r ) mechanism f satis�es 2 ≤ dL (l , r ) + dR (l , r ) ≤ 4. In

particular we have that the average distance for any alignment A satis�es 2 ≤ d (A) ≤ 4.

3
To see why Λ(l, r, x ) ≤ Λ(l, r, t (r − l )) follows from x ≤ t (r − l ), recall that Λ(l, r, x ) is the contribution to E[

���Y −
l+r

2

���]
of Y outside the range (l − x, r + x ) ⊇ (l + t (r − l ), r − t (r − l )). �at is, Λ(l, r, x ) corresponds to the contribution of a

smaller range of Y to this expectation than the range Λ(l, r, t (r − l )) corresponds to.
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De�nition 3.12. An alignment hierarchy is a set of alignments with the same “starting points”, the

same “ending points”, the same o�sets and di�erent lengths of instances. To be precise, a hierarchy

with parameters x ,n,m is de�ned to be

H (x ,n,m) , {A(0, 1 + x ,x ,n),A(0, 1 + 2x ,x ,n − 1), . . . ,A(0, 1 +mx ,x ,n −m + 1)}.

We letAi = A(0, 1+ ix ,x ,n− i +1) denote the i-th alignment in hierarchyH (x ,n,m) when the context
is clear.

Lemma 3.13. For any hierarchy H (x ,n,m), for any x ≤ t (1 + x ) and i ∈ [2,m − 1],

d (Ai+1) ≥ d (Ai ) +
4xδ

1 + (i − 1)x
−

4

n − i
.

Proof. Let (l ij , r
i
j ) denote the j-th instance in Ai , i.e., let (l ij , r

i
j ) = ((j − 1)x , 1+ (j + i − 1)x ). Note

that for all j ∈ [n − i], the three inputs {(l i+1

j , r
i+1

j ), (l ij+1
, r ij+1

), (l ij , r
i
j )} form a gadget G (l i+1

j , r
i+1

j ,x )

with o�set x and width r i+1

j − l i+1

j = 1 + (i + 1)x , so x ≤ t (1 + x ) = t (r i+1

j − l i+1

j ). Hence by

Lemma 3.9 we have that dL (l
i+1

j , r
i+1

j ) + dR (l
i+1

j , r
i+1

j ) is lower bounded by(
dL (l

i
j+1
, r ij+1

) + dR (l
i
j , r

i
j )
)
·

(
1 +

x

1 + (i − 1)x

)
−

x

1 + (i − 1)x
· (2 − 4δ ).

Summing over j, we �nd that

(n − i ) · d (Ai+1) =
n−i∑
j=1

(dL (l
i+1

j , r
i+1

j ) + dR (l
i+1

j , r
i+1

j ))

is lower bounded by

n−i∑
j=1

((
dL (l

i
j+1
, r ij+1

) + dR (l
i
j , r

i
j )
)
·

(
1 +

x

1 + (i − 1)x

)
−

x

1 + (i − 1)x
· (2 − 4δ )

)
=

n−i∑
j=1

((
dL (l

i
j+1
, r ij+1

) + dR (l
i
j , r

i
j )
)
·

(
1 +

x

1 + (i − 1)x

))
−

x (2 − 4δ )

1 + (i − 1)x
· (n − i ))

First, we observe that the distances of the le�most and rightmost points in Ai , namely dL (l
i
1
, r i

1
)

and dR (l
i
n−i+1

, r in−i+1
), are not counted in the above expression. Recalling that for any input (l , r )

mechanism f must satisfy dL (l , r ),dR (l , r ) ≤ 2, we �nd that the above expression is lower bounded

by

n−i+1∑
j=1

(
dL (l

i
j , r

i
j ) + dR (l

i
j , r

i
j )
)
·

(
1 +

x

1 + (i − 1)x

)
−

x (2 − 4δ )

1 + (i − 1)x
· (n − i ) − 4 ·

(
1 +

x

1 + (i − 1)x

)
.

Next, recalling that input (l , r ) mechanism f must satisfy dL (l , r ) + dR (l , r ) ≥ 2, we �nd that the

above expression is in turn lower bounded by

n−i+1∑
j=1

(
dL (l

i
j , r

i
j ) + dR (l

i
j , r

i
j )
)
+

4xδ

1 + (i − 1)x
· (n − i ) − 4 ·

(
1 +

x

1 + (i − 1)x

)
. (8)

But, as we have x ≤ t (1 + x ) and t < 1/2, this implies that
x

1+(i−1)x <
1

2
for all i ≥ 2. �erefore (8)

is lower bounded by

n−i+1∑
j=1

(
dL (l

i
j , r

i
j ) + dR (l

i
j , r

i
j )
)
+

4xδ

1 + (i − 1)x
· (n − i ) − 6.
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Finally, dividing through by n − i , we �nd that indeed

d (Ai+1) ≥
1

n − i
·

*.
,

n−i+1∑
j=1

dL (l
i
j , r

i
j ) + dR (l

i
j , r

i
j )

+/
-
+

4xδ

1 + (i − 1)x
−

6

n − i

≥
1

n − i + 1

·
*.
,

n−i+1∑
j=1

dL (l
i
j , r

i
j ) + dR (l

i
j , r

i
j )

+/
-
+

4xδ

1 + (i − 1)x
−

6

n − i

= d (Ai ) +
4xδ

1 + (i − 1)x
−

6

n − i
. �

Given Lemma 3.13, we are now ready to prove our core lemma, Lemma 3.7.

Proof of Lemma 3.7. We note that for any x > 0 and δ > 0, the series

∑∞
i=2

4xδ
1+(i−1)x diverges.

We may therefore �x some x > 0 such that x ≤ t (1 + x ), anm such that

m−1∑
i=2

4xδ

1 + (i − 1)x
> 3, (9)

and n such that

m−1∑
i=2

6

n − i
< 1, (10)

and consider the hierarchy H (x ,n,m) with these parameters. By Lemma 3.13, which held under

the assumption that Lemma 3.7 does not hold for the pair (δ , t ), we have

d (Am ) − d (A2) =
m−1∑
i=2

(d (Ai+1) − d (Ai ))

≥

m−1∑
i=2

4xδ

1 + (i − 1)x
−

m−1∑
i=2

4

n − i

> 2,

where the last inequality follows from Equations (9) and (10). �at is, d (Am ) > d (A2) + 2. But, as

observed before, the average distance of any alignment A must satisfy 4 ≥ d (A) ≥ 2, and so we

�nd that 4 ≥ d (Am ) > d (A2) + 2 ≥ 4, a contradiction. �

3.2.2 Applying The Core Lemma. We proceed to inspect the variance of bounded SP approx-

imate single-facility mechanisms for maximum cost minimization. For the remainder of the section

we assume f is an SP mechanism with expected approximation ratio at most
3

2
+ α for all inputs

(with α < 1

2
, as �eorem 3.4 is trivial for α ≥ 1

2
.)

By Lemma 3.7, for any (δ , t ), there exists an instance x = xδ,t satisfying Λ(x, t ) ≥ 1

2
−δ . Without

loss of generality we shi� and scale x to be (−1, 1). Let Y (δ , t ) ∼ f (xδ,t ) denote the output of

the mechanism on the instance xδ,t . We omit the parameters δ and t when the context is clear.

Let Z = |Y |. �e following lemma, due to Procaccia and Tennenholtz [2013], relates Z to X , the

maximum cost of f on x.

Lemma 3.14 ([Procaccia and Tennenholtz, 2013]). Let X be the maximum cost of f on input (−1, 1).
�en X = Z + 1.
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Consequently, the maximum cost X has variance Var(X ) = Var(Z ) and so we turn our a�ention

to lower bounding the variance of Z . Moreover, as mechanism f is

(
3

2
+α

)
-approximate and clearly

opt(−1, 1) = 1, Lemma 3.14 implies that E[Z ] = 1

2
+α ′ for some α ′ ≤ α . By our choice of x = (−1, 1)

satisfying Λ(−1, 1, t ) ≥ 1

2
− δ , we have E[Z |Z ≥ 1 − t] · Pr[Z ≥ 1 − t] ≥ 1

2
− δ . In order to lower

bound Var(Z ) we �rst consider a simpler distribution, de�ned below.

De�nition 3.15. �e concentrated version Zc (δ , t ) , {(xc ,pc ), (yc , 1−pc )} of Z (δ , t ) is a two-point
distribution, where

yc = E[Z |Z ∈ [0, 1 − t )],

xc = E[Z |Z ∈ [1 − t ,∞)],

pc = Pr[Z ∈ [1 − t ,∞)].

In words, Zc is obtained from Z by concentrating probabilities in the intervals [1 − t ,∞) and

[0, 1 − t ) respectively to points xc and yc . Note that concentrating probabilities in both intervals

to points yields the same expectation as Z and can only decrease the variance. �at is, E[Zc ] =

E[Z ] = 1

2
+ α ′ and Var(Zc ) ≤ Var(Z ). Moreover, the contribution to E[Z ] of Z conditioned on

Z < [0, 1 − t ) and the equivalent contribution to E[Zc ] are the same. �at is,

pcxc = Λ(−1, 1, t ) ≥
1

2

− δ .

Revisiting the variance of Zc , it is easy to see that

Var(Zc ) = E[Z 2

c ] − E[Zc ]
2 = pcx

2

c +

(
1

2
+ α ′ − pcxc

)
2

1 − pc
−

(
1

2

+ α ′
)2

.

Extracting the form of Var(Zc ), we obtain the following de�nition.

De�nition 3.16. �e formal variance v (p,x , ε ) is the expression

v (p,x , ε ) , px2 +

(
1

2
+ ε − px

)
2

1 − p
−

(
1

2

+ ε
)2

,

and the simpli�ed formal variance is v (p,x ) , v (p,x ,α ).

We aim to bound v (p,x , ε ) and v (p,x ) with some constraints on (p,x , ε ), instead of bounding

Var(Zc ) or Var(Z ) directly.

De�nition 3.17. �e feasible domain Ω(δ , t ) is de�ned to be

Ω(δ , t ) ,
{
(p,x )

����p ∈ [0, 1], x ∈ [1 − t ,∞),
1

2

− δ ≤ px
}
,

and the relaxed variance bound V (δ , t ) is de�ned to be

V (δ , t ) , inf {v (p,x ) | (p,x ) ∈ Ω(δ , t )}.

In words, Ω(δ , t ) is a domain of simpli�ed formal variance v (p,x ) containing all possible concen-

trated versions of Z (δ , t ), and V (δ , t ) is the tightest lower bound on the simpli�ed formal variance

v (p,x ) in this domain.

�e next lemma establishes that the relaxed variance bound serves as a lower bound for

Var(Z (δ , t )).

Lemma 3.18. For any δ and t ≤ 1

2
− α ,

Var(Z (δ , t )) ≥ Var(Zc (δ , t )) ≥ V (δ , t ).
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Proof. Having argued the �rst inequality above, we now prove the second inequality.

By de�nition of the formal variance v (p,x , ϵ ) and the constraints on Zc , we have

Var(Zc ) ≥ inf {v (p,x , ε ) | (p,x ) ∈ Ω(δ , t ), ε ≤ α }.

Note that for �xed p and x , the formal variance v (p,x , ε ) is

v (p,x , ε ) = px2 +

(
1

2
− px

)
2

1 − p
−

1

4

+
p

1 − p

(
ε2 − (2x − 1)ε

)
,

which is quadratic in ε , with an axis of symmetry at ε =
(
x − 1

2

)
. As t ≤ 1

2
− α , for all x ≥ 1− t and

ε ≤ α the following holds: x − 1

2
≥ 1

2
− t ≥ α ≥ ε . By the above we conclude that for any �xed p

and x ≥ 1 − t , the function v (p,x , ε ) is monotone decreasing in ε for all ε ≤ α , implying that

Var(Zc ) ≥ inf {v (p,x , ε ) | (p,x ) ∈ Ω(δ , t ), ε ≤ α }

= inf {v (p,x ,α ) | (p,x ) ∈ Ω(δ , t )}

= inf {v (p,x ) | (p,x ) ∈ Ω(δ , t )}

= V (δ , t ). �

By Lemma 3.18, it su�ces to derive a lower bound on V (δ , t ). �e �nal lemma helps us do that,

by giving a formula for the relaxed variance bound.

Lemma 3.19. For t ≤ 1

2
− α , the relaxed variance bound V (δ , t ) satis�es

V (δ , t ) = v *
,

1

2
− δ

1 − t
, 1 − t+

-
.

Proof. Recall the de�nition of V (δ , t ),

V (δ , t ) = inf {v (p,x ) | (p,x ) ∈ Ω(δ , t )}.

To lower bound the above, we expand v (p,x ) and consider it as a function of x .

v (p,x ) = px2 +

(
1

2
+ α − px

)
2

1 − p
−

(
1

2

+ α
)2

=

(
p

1 − p

)
x2 −

2p
(

1

2
+ α

)
1 − p

x +

(
1

2
+ α

)
2

1 − p
−

(
1

2

+ α
)2

.

For �xed p and α this expression is quadratic in x , with an axis of symmetry at x =
(

1

2
+ α

)
. As

t ≤ 1

2
− α , for all x ≥ 1 − t we have that x ≥ 1 − t ≥ 1

2
+ α and so for any �xed p and x ≥ 1 − t ,

the function v (p,x ) is monotone increasing in x and therefore a�ains its minimum over the set

Sp , {x | x ≥ 1 − t , 1

2
− δ ≤ px } at the minimum x ∈ Sp ; that is, at x = max{1 − t , ( 1

2
− δ )/p}.

We consider the two cases corresponding to p (1 − t ) ≥ 1

2
− δ and p (1 − t ) ≤ 1

2
− δ , for which the

minimum is a�ained at x = 1 − t and x = ( 1

2
− δ )/p, respectively.

Case 1: For �xed p ≥
1

2
−δ

1−t , the minimum x ∈ Sp is x = 1 − t and so the minimum value of v (p,x )
over all x ∈ Sp is v (p, 1 − t ), which we expand below.

v (p, 1 − t ) = p (1 − t )2 +

(
1

2
+ α − p (1 − t )

)
2

1 − p
−

(
1

2

+ α
)2

.
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Taking the derivative with respect to p, we �nd that this function is monotone increasing in p,

∂

∂p


p (1 − t )2 +

(
1

2
+ α − p (1 − t )

)
2

1 − p
−

(
1

2

+ α
)2


=

(
t + α − 1

2

)
2

(1 − p)2
≥ 0.

So, the minimal value of v (p,x ) with p ≥
1

2
−δ

1−t and x ∈ Sp is precisely v
( 1

2
−δ

1−t , 1 − t
)
.

Case 2: For �xed p ≤
1

2
−δ

1−t , the minimum x ∈ Sp is x = (1/2 − δ )/p and so the minimum value

of v (p,x ) over all x ∈ Sp is v (p, ( 1

2
− δ )/p)), which we rewrite as a function of x = (1/2 − δ )/p as

v ((1/2 − δ )/x ,x ) and expand below.

v *
,

1

2
− δ

x
,x+

-
=

(
1

2

− δ
)
x +

(α + δ )2

1 −
1

2
−δ
x

−

(
1

2

+ α
)2

.

Again, taking the derivative, this time with respect to x , we �nd that

∂

∂x



(
1

2

− δ
)
x +

(α + δ )2

1 −
1

2
−δ
x

−

(
1

2

+ α
)2


=

(
1

2
− δ

) (
x + 2δ + α − 1

2

) (
x − 1

2
− α

)
(
x − 1

2
+ δ

)
2

≥ 0.

�at is, this bound is monotone increasing in x = (1/2 − δ )/p, or monotone decreasing in p, and so

the minimal value of v (p,x ) with p ≤
1

2
−δ

1−t and x ∈ Sp is precisely v
( 1

2
−δ

1−t , 1 − t
)
.

In summary, we �nd that indeed,

inf {v (p,x ) | (p,x ) ∈ Ω(δ , t )} = inf

{
inf {v (p,x ) | x ∈ Sp } | p ∈ [0, 1]

}

≥ v *
,

1

2
− δ

1 − t
, 1 − t+

-
. �

3.2.3 Proof of the Matching Lower Bound. Equipped with Lemmas 3.18 and 3.19, we are

�nally ready to prove this section’s lower bound.

Proof of Theorem 3.4. Consider a sequence of (δ , t ) values in

{
( 1

i ,
1

i ) | i ∈ N
}
. By Lemmas 3.18

and 3.19, for i large enough, i.e.,
1

i ≤
1

2
− α (recall that α < 1

2
, so such an i exists), we have

Var

(
Z

(
1

i
,

1

i

))
≥ V

(
1

i
,

1

i

)
= v *

,

1

2
− 1

i

1 − 1

i

, 1 −
1

i
+
-
.

Note that v
(

1

2
−τ

1−τ , 1 − τ
)
, as a function of τ , is continuous at 0. �erefore

sup

x
Var(Z (x)) ≥ sup

1

i ≤
1

2
−α

Var

(
Z

(
1

i
,

1

i

))
≥ lim

i→∞
v *

,

1

2
− 1

i

1 − 1

i

, 1 −
1

i
+
-
= v

(
1

2

, 1
)
=

(
1

2

− α
)2

,

completing the proof. �

4 THE CURIOUS CASE OF MULTIPLE FACILITIES
Having fully characterized the optimal approximation-variance tradeo� for the case of a single

facility in Section 3, we turn our a�ention to multiple facilities. Our �rst observation is that now

the tables are turned: the maximum cost objective is relatively straightforward (given previous

work), whereas the social cost objective turns out to be quite convoluted.
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In more detail, the best known SP mechanism for the social cost objective, and any number of

facilities k ≥ 2, is the Eqal Cost (EC) Mechanism of [Fotakis and Tzamos, 2013b]. �e mechanism

�rst covers the player locations with k disjoint intervals [αi ,αi + `], in a way that minimizes the

interval length `. �en, with probability 1/2, the mechanism places a facility at each αi if i is odd,

and at αi + ` if i is even; and, with probability 1/2, the mechanism places a facility at each αi if i is

even, and at αi + ` if i is i is odd.

It is easy to see that the EC Mechanism is 2-approximate. Moreover (if not as obvious), it is

GSP. �e crucial observation in our context is that the maximum cost under the EC Mechanism is

always exactly `, that is, its maximum cost has zero variance — even though it relies strongly on

randomization!

We conclude that, in order to establish any kind of approximation-variance tradeo� for the

maximum cost objective, we would need to improve the best known SP approximation mechanism

without variance constraints, which is not our focus. In the remainder of this section, therefore, we

study the social cost objective. Moreover, we restrict ourselves to the case of two facilities; the

reason is twofold. First, very li�le is known about SP mechanisms for social cost minimization with

k ≥ 3 facilities — not for lack of trying. Second, and more importantly, we establish an impossibility

result, that holds even for the case of two facilities.

�e best known SP mechanism for social cost minimization in two-facility games is due to [Lu

et al., 2010]. It selects the �rst facility from the player locations uniformly at random. �en, it

selects the second facility also from the player locations with each location selected to be the second

facility with probability proportional to its distance from the �rst selected facility. Lu et al. show

that this mechanism is an SP 4-approximate mechanism. �e best deterministic approximation is

given by the GSP mechanism which simply selects lt(x) and rt(x) — its approximation ratio is Θ(n).
It is natural to think that it should at least be possible to obtain some (possibly suboptimal)

approximation-variance tradeo� by randomizing between the two foregoing mechanisms, via the

Convexp Mechanism. Strangely enough, the following theorem — our second major technical

result — essentially rules this out.

�eorem 4.1. Let { fθ }θ ∈[0,1] be a family of SP mechanisms for two-facility games that satisfy the

following technical assumptions:

(1) For any θ ∈ [0, 1] and location vector x, fθ (x) places facilities only on locations in x.
(2) For any θ ∈ [0, 1], if the location vector x contains at least two di�erent locations, then fθ (x)

always selects two di�erent locations.

De�ne the random variable C ( fθ , x) to be the social cost of mechanism fθ on location vector x. �en

the following conditions are mutually exclusive:

(3) f0 is constant-approximate; i.e., there is a constant α ≥ 1 such that E[C ( fθ , x)] ≤ α · opt(x).
(4) For any location vector x ∈ Rn , Var(C ( fθ , x)) decreases monotonically with θ , down to

Var(C ( f1, x)) = 0.

(5) For any location vector x ∈ Rn , E[C ( fθ , x)] is continuous in θ .

We think of Conditions 3–5 as the basic requirements that any “reasonable” tradeo� must satisfy.

We also consider the �rst two assumptions as rather mild. In particular, they are both satis�ed by

every “useful” SP mechanism for minimizing the social cost in two-facility games,
4

including the

best known SP approximation mechanism of Lu et al. [2010], all the mechanisms characterized

by Miyagawa [2001] (he assumes Pareto e�ciency, which implies our Assumption 2), and the

winner-imposing mechanism of Fotakis and Tzamos [2010].

4
Unlike the maximum cost objective, for which “useful” mechanisms such as LRM and Generalized-LRMα are known to

make use of the freedom to choose facilities outside the player locations.
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Let us now revisit Convexp in this se�ing; why is it not a counterexample to the theorem? To

be clear, we are thinking of f0 as the 4-approximation mechanism of [Lu et al., 2010], and of f1
as the rule that deterministically selects lt(x) and rt(x) (and has a bounded, though not constant,

approximation ratio). It is easy to see that this mechanism satis�es Conditions 1, 2, 3, and 5.

�erefore, the theorem implies that Convexp (surprisingly) violates Condition 4: the variance does

not decrease monotonically with θ . �is stands in contrast to Section 3.1, where the variance of

Convexp (as well as Generalized-LRMα ) is monotonic.

�e proof of �eorem 4.1 relies on establishing the following, clearly contradictory lemmas.

Lemma 4.2. If { fθ }θ ∈[0,1] is a family of SP mechanisms for 2-facility location which satis�es the

conditions of �eorem 4.1, then mechanism f1 has unbounded approximation ratio for the social cost,

(even) when restricted to 3-location instances.

In the proof of the lemma, which can be found in Appendix B.1, we �rst show that the zero-

variance mechanism f1 must, in fact, be deterministic. We can therefore leverage a characterization

of deterministic bounded SP mechanisms for 2-facility location [Fotakis and Tzamos, 2013a] to

establish that f1 has unbounded approximation ratio, by proving that it cannot belong to this family.

We then prove the opposite statement in Appendix B.2 — and the theorem follows.

Lemma 4.3. If { fθ }θ ∈[0,1] is a family of SP mechanisms for 2-facility location which satis�es the

conditions of �eorem 4.1, then mechanism f1 has bounded approximation ratio for the social cost,

when restricted to 3-location instances.

5 DISCUSSION
We wrap up with a brief discussion of two salient points. First, as noted in §1.3, several previous

papers study mechanism design with risk averse players [Bhalgat et al., 2012, Dughmi and Peres,

2012, Fu et al., 2013, Maskin and Riley, 1984]. Can our results be extended to this se�ing? If we

modeled the players’ risk aversion by changing their utility functions, we would change the set

of strategyproof mechanisms. Nevertheless, it might be the case that the optimal approximation-

variance tradeo� — for the social cost or maximum cost objective — is independent of the players’

individual utility functions. It is somewhat encouraging that the Eqal Cost Mechanism (see

§4) of Fotakis and Tzamos [2013b] gives the same approximation guarantees (the best known for

the maximum cost) for players with any concave cost function. But risk aversion corresponds

to a convex cost function (or a concave utility function), for which Fotakis and Tzamos establish

negative results.

Second, we would like to reiterate that our paper potentially introduces a new research agenda.

Just to give one example, the problem of impartial selection [Alon et al., 2011, Fischer and Klimm,

2014, Holzman and Moulin, 2013] exhibits an easy separation between the approximation ratio

achieved by deterministic and randomized SP mechanisms (much like facility location); what is the

optimal approximation-variance tradeo�? Even more exciting are general results that apply to a

range of problems in mechanism design. And, while our work mainly applies to facility location,

it does tease out general insights and questions: Can we build on the ideas behind the convexp
mechanism (see Appendix A) to obtain “good” (albeit suboptimal, see §3.1), general approximation-

variance tradeo�s? Is a “linear” upper bound of the form c · opt on the sum of expectation and

standard deviation (�eorem 3.3) something that we should expect to see more broadly? Can we

characterize problems that do not admit approximation-variance tradeo�s satisfying the conditions

of �eorem 4.1? �ese challenges can drive the development of a theory of expectation-variance

analysis in algorithmic mechanism design.
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A GENERAL MECHANISM: CONVEX COMBINATIONS OF MECHANISMS
In this section we analyze a natural and general mechanism to obtain approximate-variance

tradeo�s.

De�nition A.1. LetMa andMb be two approximate mechanisms for some (common) optimization

problem. �en mechanism convexp (Ma ,Mb ) is de�ned as follows: this mechanism emulatesMa
with probability p and emulatesMb with probability 1 − p.

Linearity of expectation ensures that ifMa andMb are both SP, then so is the derived mechanism

convexp (Ma ,Mb ). Moreover, also by linearity of expectation,Mp obtains an approximation ratio

of p ·αa + (1−p) ·αb ; that is, its approximation ratio varies linearly with p. Unfortunately, standard

deviation does not degrade linearly, as we shall see.

Speci�cally, our analysis focuses on minimization problems. We show that convexp yields a

super-linear approximation to standard deviation tradeo�. Consequently, for 1-facility games with

the maximum cost objective, this mechanism is suboptimal.

�eorem A.2. LetMa andMb be approximate mechanisms for some minimization problem. Con-

sider an input x which (up to scaling) has optimal value opt(x) = 1. Suppose that on this input these

mechanisms’ respective approximation ratios and variances are αa ,αb and σ 2

a ,σ
2

b . If X is the random

variable corresponding to the cost of convexp (Ma ,Mb ) on input x, then for all p ∈ (0, 1), if αa , αb
or σa , σb , then

E[X ] + std(X ) > p · (αa + σa ) + (1 − p) · (αb + σb ).

Generally, E[X ] = p · αa + (1 − p) · αb and

std(X ) =
√
(p · σa + (1 − p) · σb )2 + p · (1 − p) ·

(
(αa − αb )2 + (σ 2

a − σ
2

b )
)
.

Proof. By linearity of expectation we have that indeed E[X ] = p ·αa + (1−p) ·αb . Next, denote

by Xa and Xb the cost of mechanismsMa andMb respectively. By de�nition, we have that

σ 2

a = Var(Xa ) = E[X 2

a] − E[Xa]
2,

or equivalently E[X 2

a] = α2

a + σ
2

a . Likewise, E[X 2

b ] = α2

b + σ
2

b . Conditioning on whether or not

mechanism convexp (Ma ,Mb ) followsMa , we �nd that

Var(X ) = E[X 2
] − E[X ]

2

= p · E[X 2

a] + (1 − p) · E[X 2

b ] − (p · E[Xa] + (1 − p) · E[Xb ])2

= p · (α2

a + σ
2

a ) + (1 − p) · (α2

b + σ
2

b ) − (p · αa + (1 − p) · αb )
2

= (p · σa + (1 − p) · σb )
2 + p · (1 − p) ·

(
(αa − αb )

2 + (σ 2

a − σ
2

b )
)
.

�e term p · (1 − p) ·
(
(αa − αb )

2 + (σ 2

a − σ
2

b )
)

above is strictly greater than zero, provided p , 0, 1

and αa , αb or σa , σb , in which case we have that indeed

E[X ] + std(X ) > p · (αa + σa ) + (1 − p) · (αb + σb ). �

At this point, we should note a delicate point, namely that αa , αb , σ 2

a and σ 2

b in �eorem A.2’s

statement need not be the worst-case approximation ratios and variances of both mechanisms. In

particular, if the “hard inputs” for mechanismMa andMb do not coincide, the above expression

parameterized by the worst-case approximation ratios and variances of the mechanisms serves as an

upper bound for the approximation-variance tradeo� achieved by Mechanism convexp (Ma ,Mb ).
However, for 1-facility location games, the hard instances for the best-known optimal deterministic

and randomized mechanisms are one and the same, as the distributions of these mechanisms’
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approximation ratios are invariant under shi�ing and scaling. �erefore, for this problem, we may

replace αa , αb , σ 2

a and σ 2

b with the worst-case approximation ratios and variances. In particular, by

�eorem A.2 and our lower bound of �eorem 3.4, we obtain the corollary stated in §3.

Corollary 3.1 (reformulated). For one-facility maximum cost minimization, using an optimal

(2-approximate) deterministic mechanism and the optimal (
3

2
-approximate and

1

4
-variance) random-

ized mechanism LRM to play the roles ofMa andMb in convexp (Ma ,Mb ) yields a randomized

mechanism whose approximation ratio X satis�es E[X ] = 2 −
p
2
and std(X ) =

√
p
2
·
(
1 −

p
2

)
.

�is corollary coupled with our upper bound of �eorem 3.3 implies that the approximation-

variance tradeo� achieved by Mechanism convexp for single-facility maximum cost minimization,

E[X ] + std(X ) = *
,
2 −

p

2

+

√
p

2

·

(
1 −

p

2

)
+
-
> 2,

is supobitmal for this particular game, as Mechanism Generalized-LRMα has approximation

ratio X satisfying E[X ] + std(X ) ≤ 2. For reference, Figure 2 contains a comparison of the

standard deviation to expectation curve obtained by convexp compared to the optimal mechanism,

Generalized-LRMα , and the ”error term” (their di�erence) as a function of E[X ]. Note that the

standard deviation of convexp decreases monotonically with its expectation, though not linearly.

Fig. 2. convexp contrasted with Generalized-LRMα .
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B PROOF OF THEOREM 4.1: OMITTED LEMMAS
In this section we prove �eorem 4.1 by proving two contradictory lemmas, which are stated in §4.

Because we are proving an impossibility result, we can focus without loss of generality on 3-

location inputs with n players. We denote such inputs by x = {(x1,n1), (x2,n2), (x3,n3)}, indicating

that ni players are at location xi , with x1 ≤ x2 ≤ x3. We denote the set of inputs of this form by I3.

For an instance x = {(x1,n1), (x2,n2), (x3,n3)} ∈ I3, we denote by S (x) the set of possible values

of social cost when facilities are placed on player locations. For example, when x2 − x1 ≤ x3 − x2,

S (x) = {(x2 − x1)n1, (x2 − x1)n2, (x3 − x2)n3}, where the three elements correspond to the social

costs obtained by pu�ing facilities at {x2,x3}, {x1,x3} and {x1,x2} respectively. Finally, we denote

by {(si ,pi ) | si ∈ S (x), i ∈ I ⊆ [3]} a distribution of social costs, indicating that cost si is incurred

with probability pi .

B.1 Proof of Lemma 4.2
In this section we establish that for any family of mechanisms { fθ }θ ∈[0,1] satisfying the conditions

of �eorem 4.1, the mechanism f1 must have a bounded approximation ratio for the social cost

objective. We start by proving that f1 must in fact be deterministic. To do so, we rely on the notion

of partial group strategyproofness, or partial GSP for short, introduced by Lu et al. [2010].
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De�nition B.1. A partial group strategyproof (partial GSP) mechanism for facility location problems

is a mechanism for which a group of players at the same location cannot bene�t from misreporting

their locations simultaneously.

As Lu et al. [2010] observed, SP implies partial GSP.

Lemma B.2 ([Lu et al., 2010]). Any SP mechanism for 2-facility location is also partial GSP.

Armed with Lemma B.2, we now move on to stating and proving our characterization of 0-

variance SP mechanisms for 2-facility location social cost minimization. �at is, we characterize SP

mechanisms which always produce the same social cost on a given instance.

Lemma B.3. Restricted to 3-location instances I3, all 0-variance SP mechanisms that place facilities

on player locations are deterministic.

Proof. Fix a 0-variance SP mechanism f that always places facilities on player locations.

For a 3-location instance x = {(x1,n1), (x2,n2), (x3,n3)} ∈ I3 where x1 ≤ x2 ≤ x3, let the balance

ratio r (x) of x be such that

r (x) =
{

(x2 − x1)/(x3 − x2), if x2 − x1 ≤ x3 − x2

(x3 − x2)/(x2 − x1), otherwise
.

If x2 − x1 ≤ x3 − x2, we call x1 the near end of x and x3 the far end. Otherwise x3 is the near end

and x1 is the far end. Particularly, when x2 − x1 = x3 − x2, both ends can be the near end or the far

end. When talking about a particular instance, we scale the instance and the mechanism itself at

the same time retaining all relevant properties, thereby drastically simplifying the discussion. We

will show that both far and near end of an instance are both output deterministicly. �at is, each of

these points is output with probability exactly 0 or 1. As f always chooses exactly two locations

and places facilities on player locations, this implies that f is deterministic.

We �rst prove that on any instance x ∈ I3, mechanism f outputs the far end with probability

either 0 or 1. �at is (up to rescaling), for any input x = {(−t ,a), (0,b), (1, c )} where t ≤ 1, if we let

A = −t ,B = 0,C = 1 denote respectively the le�most, middle and rightmost group of players in the

instance x, then f outputs C with probability exactly 0 or 1. Clearly, S (x) = {at ,bt , c}. Suppose

f places a facility at C with probability p ∈ (0, 1); then the cost to players in C is (1 − p). Pick a

small δ > 0 such that δ < 1 − p, 1 + δ , at and 1 + δ , bt . As a 0-variance mechanism, on instance

x′ = {(−t ,a), (0,b), (1 + δ , c )}, f cannot randomize nontrivially between pu�ing a facility at 1 + δ
or not. If f puts a facility at 1 + δ on x′, the group C in x will deviate to 1 + δ such that their cost

will decrease to δ < 1 − p. If f does not put a facility at 1 + δ , players at 1 + δ in x′ will deviate

to 1, decreasing their cost from 1 + δ to pδ + (1 − p) (1 + δ ). Partial GSP is ruined in both cases.

We conclude that f acts deterministically on the far end of any instance. As a corollary, on any

instance x whose balance ratio is r (x) = 1, mechanism f acts completely deterministically.

We now prove that on any instance, f outputs the near end with probability either 0 or 1. To this

end, we �rst consider the instance x = {(−1,a), (0,b), (1, c )}. By the previous paragraph, we have

that, as r (x) = 1, the probability that location −1 is output some p ∈ {0, 1}. We prove that for all

0 < t ≤ 1, on input xt = {(−t ,a), (0,b), (1, c )} mechanism f outputs location −t with probability

pt precisely p, and in particular the probability of the near end being output is 0 or 1. �ere are

two cases to consider, depending on the value of p.

Case 1: p = 0. If pt > 0, players at −1 in x will deviate to −t in order to decrease their cost from

1 to pt · (1 − t ) + (1 − pt ), contradicting partial GSP. �erefore pt = 0 = p.
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Case 2: p = 1. �is case is more intricate. We de�ne a sequence {li }
∞
i=0

where l0 = 1 and

li+1 = (l2

i + 2li )/(2.5 + 2li ) and prove by induction that for all k ≥ 0, on any input xt satisfying

r (xt ) = t ≥ lk , mechanism f outputs the near end of xt with probability pt = 1(= p). �e base case

corresponds to xt = x, and so trivially pt = p = 1. For the inductive step, consider some instance

xt with r (xt ) = t satisfying li > t ≥ li+1, and suppose pt < 1. By the inductive hypothesis, on

input x′ = {(−li ,a), (0,b), (1, c )} the probability of f outpu�ing −li is 1. �erefore, by partial GSP,

as group A in x should not bene�t from deviating to −li , we must have (1 − p) · t ≤ li − t , or put

otherwise

pt · t ≥ 2t − li . (11)

On the other hand, consider the instance x′′ =
{
(−t ,a),

(
li−t
1+li
,b

)
, (1, c )

}
. Note that since

r (x′′) =
(li − t )/(1 + li ) + t

1 − (li − t )/(1 + li )
= li ,

by the induction hypothesis together with Case 1, f chooses the near and far end of x′′ with

probability 0 or 1 each, and as f always outputs exactly two facilities, each on a distinct player

location, this implies that f performs deterministically on x′′. By partial GSP, location
li−t
1+li

in x′′

must get a facility, or else the players at this location will deviate to 0 in order to decrease their

cost from
li−t
1+li
+ t to at most

li−t
1+li
+ pt · t . Now, by Case 1, the far end of xt is chosen by f with

probability 0 or 1. As f always outputs two facilities on input xt , the far end must therefore be

chosen with probability precisely 1, else the expected number of output facilities would be strictly

less than two. Likewise, group B in xt must get a facility with probability precisely 1 − pt , and so

the cost for players in group B on input xt is precisely pt · t . Consequently, again invoking partial

GSP of f , we �nd that the players at group B in xt must not bene�t from deviating to
li−t
1+li

and so

we must have

pt · t ≤
li − t

1 + li
. (12)

Combining Equations (11) and (12), we get

2t − li ≤
li − t

1 + li
,

which implies that t ≤
l 2

i +2li
3+2li

<
l 2

i +2li
2.5+2li

= li+1, a contradiction, and so we conclude that pt = 1.

We are still to show that lk tends to 0 as k tends to in�nity. Note that lk > 0 for all k , and

li+1

li
=

li + 2

2li + 2.5
≤ max

{
li
2li
,

2

2.5

}
=

2

2.5
.

�erefore 0 < lk ≤
(

2

2.5

)k
. Clearly limk→∞ lk = 0.

From the above we conclude that for a 3-location instance x ∈ I3, if r (x) > 0, f does not

randomize nontrivially on both ends of x. If r (x) = 0, x must be a 2-location, or even a 1-location

instance, on which there is only one way to put 2 facilities. Altogether we conclude that, f
acts deterministically on both ends of any 3-location instance, or equivalently, f is deterministic

restricted to 3-location instances. �

Given Lemma B.3, we may safely assume that f1 is a deterministic mechanism whenever re-

stricted to 3-location instances. We will rely on the following characterization of deterministic SP

mechanisms for the 2-facility location problem, established by Fotakis and Tzamos [2013a, �eorem

3.3].
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Lemma B.4 ([Fotakis and Tzamos, 2013a]). Let f be any SP mechanism for 2-facility location with

a bounded approximation ratio for the social cost. �en, restricted to 3-location instances with n ≥ 5

players, either there exists a unique dictator j ∈ [n] such that for all instances x ∈ I3 a facility is

allocated to player j, or for all instances x ∈ I3 the two facilities are placed on lt(x) and rt(x).

Using this characterization and Lemma B.3 we can now prove Lemma 4.2.

Proof of Lemma 4.2. We prove that f1 neither chooses the two extremes nor has a dictator,

and therefore by Corollary B.4 is not a bounded mechanism. Let α be the approximation ratio

of f0. Consider instance x = {(−1,n), (0,n), (1, 1)} (i.e., n players at −1, n at 0 and 1 at 1) where

n ≥ max{3α , 2}. Clearly S (x) = {1,n}. Let C0 = C ( f0, x). �en, by virtue of f0 being α-approximate

and by Markov’s Inequality, we have

Pr[C0 = n] ≤ Pr[C0 ≥ n] ≤
E[C0]

n
≤

α

3α
=

1

3

. (13)

If the deterministic mechanism f1 puts a facility at 1, thereby producing social cost C ( f1, x) = n,

then by continuity of expected social cost, there is a 0 < θ ′ < 1 satisfying E[C ( fθ ′, x)] = 1

2
(1 + n),

and therefore Pr[C ( fθ ′, x) = n] = 1

2
. Pick such a θ ′ and let Cθ ′ = C ( fθ ′, x). For a random variable

C chosen from the distribution {(1, 1 − p), (n,p)} we have Var(C ) = (n − 1)2 · (p − p2), which is

monotone increasing in p for all p ≤ 1

2
. By Equation (13) we thus obtain

Var(C0) ≤ Var({(1, 2/3), (n, 1/3)}) < Var({(1, 1/2), (n, 1/2)}) = Var(Cθ ′ ),

and also clearly Var(Cθ ′ ) > 0 = Var(C1), a contradiction to monotonicity of Var( fθ , x).
We conclude that, given the location vector x, f1 puts facilities at −1 and 0. In particular, f1

neither chooses the two extremes (which are −1 and 1) nor has a dictator (because any player can

be the one located at 1), and hence has an unbounded approximation ratio. �

B.2 Proof of Lemma 4.3
In this section we establish that for any family of SP mechanisms { fθ }θ ∈[0,1] satisfying the conditions

of �eorem 4.1, the mechanism f1 must have a bounded approximation ratio for the social cost

objective.

Lemma B.5. Let { fθ }θ ∈[0,1] be a family of SP mechanisms satisfying the conditions of �eorem 4.1. If

f0 restricted to n-player 3-location instances has a bounded approximation ratio α = α (n), then for

any n-player 3-location input x ∈ I3, if S (x) = {s1, s2, s3} and s3 > 40α · opt(x), then C ( f1, x) , s3.

Proof. Without loss of generality let s1 = 1. In addition, let t > 20. Assuming s3 = 2tα > 20α ,

we proceed by 2 cases. �roughout the proof we rely on the previously-stated simple observation

that for a random variable C chosen from the distribution {(1, 1 − p), (z,p)} we have Var(C ) =
(z − 1)2 · (p − p2), which is monotone increasing in p for all p ≤ 1

2
and monotone decreasing in p

for p ≥ 1

2
.

Case 1: s2 > t · α . We prove that C ( f1, x) = s1. Otherwise, C ( f1, x) ≥ s2 > α ≥ C ( f0, x) and by

continuity of expected social cost there exists some θ ∈ (0, 1) such that E[C ( fθ , x)] = 1

2
(s1 + s2).

Let C0 = C ( f0, x) and Cθ = C ( fθ , x). Since f0 is α-approximate, by Markov’s Inequality we have

Pr[C0 = s1] = 1 − Pr[C0 ≥ s2] ≥ 1 −
α

tα
= 1 −

1

t
.

�erefore, as shi�ing all the mass of C0’s distribution from cost s2 > t · α > α = E[C0] to cost s3

can only serve to increase the variance, and by our observation that Var({(1, 1 − p), (z − p)}) is
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monotone increasing in p ≤ 1

2
(e.g.,

1

t ≤
1

2
), we have

Var(C0) ≤ Var({(s1, 1 − 1/t ), (s3, 1/t )})

= Var({(1, 1 − 1/t ), (2tα , 1/t )})

= (2tα − 1)2 · (1/t − 1/t2)

≤ 4t2α2 · (1/t )

= 4tα2.

On the other hand, for Cθ we have E[Cθ ] = 1

2
(s1 + s2) and so shi�ing all the mass from s3 to s1 and

part of the mass from s2 to s1 (in order to keep the expected cost unchanged) can only decrease the

variance,
5

we have

Var(Cθ ) ≥ Var({(s1, 1/2), (s2, 1/2)})

≥ Var({(1, 1/2), (tα , 1/2)})

= (tα − 1)2 ·
(
1

2

−
1

4

)
=
t2α2 − 2tα + 1

4

>
t2α2 − 2tα

4

.

But for t > 20 this implies that

Var(Cθ ) − Var(C0) > 0,

contradicting monotonicity of variance. �erefore in this case, C ( f1, x) = s1 , s3.

Case 2: s2 ≤ t · α . If C ( f1, x) = s3, then by continuity of expected social cost there exists some

θ ∈ (0, 1) such that E[C ( fθ , x)] = 1

2
(s2 + s3). Let C0 = C ( f0, x), Cθ = C ( fθ , x). Again, by Markov’s

Inequality and f0 being α-approximate, we have

Pr[C0 = s3] ≤ Pr[C0 ≥ s3] ≤
α

s3

=
1

2t
,

and so we have, by a similar argument to Case 1, that

Var(C0) ≤ Var({(s1, 1 − 1/2t ), (s3, 1/2t )}) ≤ 2tα2.

On the other hand,

Var(Cθ ) ≥ Var({(s2, 1/2), (s3, 1/2)})

≥ Var({(tα , 1/2), (2tα , 1/2)})

= t2α2 · Var({(0, 1/2), (1, 1/2)})

=
1

4

t2α2.

But as t > 20 > 8, we have

Var(Cθ ) − Var(C0) =
tα2

4

(t − 8) > 0,

again contradicting monotonicity of variance. �erefore in this case, too, C ( f1, x) , s3.

5
�is, as the di�erence between s3 and E[Cθ ] = 1

2
(s1 + s2) is greater than the di�erences between both other costs and

1

2
(s1 + s2), which are both equal to

1

2
(s2 − s1).
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We conclude that when s3 = 2tα > 40α , we have C ( f1, x) , s3. �

Lemma B.6. For an n-player 3-location instance x, if S (x) = {s1, s2, s3} where s1 ≤ s2 ≤ s3, then

s2 ≤ (n − 2) · s1 = (n − 2) · opt(x).

Proof. Without loss of generality suppose x = {(−1,a), (0,b), (t , c )}, where a + b + c = n,

a,b, c ≥ 1 and t ≥ 1, in which case for all d, e ∈ {a,b, c}, we have
d
e ≤ n−2. Clearly S (x) = {a,b, ct }.

Now, regardless of the ordering of S (x), we �nd that s1 is at least some e in {a,b, c}, as t ≥ 1.

Moreover, s2 is at most some d in {a,b, c}, as s2 ≤ s3 and either s2 , ct or s3 , ct . Consequently we

�nd that

s2

s1

≤
d

e
≤ n − 2. �

Proof of Lemma 4.3. Let α = α (n) be the approximation ratio of f0 restricted to n-player

3-location instances. For any 3-location instance x, if s3 ≤ 40α · opt(x), mechanism f1 is 40α-

approximate. Else, by Lemma B.5 and Lemma B.6, C ( f1, x) ≤ s2 ≤ (n − 2) · s1, and so f1 is

(n − 2)-approximate. In both cases the approximation ratio of f1 is bounded by max{(n − 2), 40α }
for all x. �
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