Optimized Democracy (Fall 2025)

Problem Set #2
— Solutions —

Due: 10/8/2025 11:59pm ET

Instructions:

e You may discuss the problems with classmates but please write down solutions completely on
your own.

e The solutions to many of the problems that we give can be found in papers, but, needless to
say, you should avoid reading the proof if you come across the relevant paper. If for some
reason you did see the solution before working it out yourself, please say so in your solution.

e You must not use Al in any way.

e Please type up your solution and submit to Gradescope.
Problems:

1. Note: The following problem is identical to one from the spring 2025 edition of CS 1360.
If you've taken that course, simply say so (without solving the problem) and you’ll get full
credit.

We saw in class a proof sketch of the Gibbard-Satterthwaite Theorem for the special case of
strategyproof and neutral voting rules with m > 3 and m > n. That proof relied on two key
lemmas. In this problem, you will prove the two lemmas and formalize the theorem’s proof
for this special case.

Prove the following statements.

(a) [5 points] Let f be a strategyproof voting rule, o = (o1, ...,0,) be a preference profile,

and f(o) = a. If o’ is a profile such that [a =,, * = a >, x] forallz € Aand i € N,
then f(o') = a. '
Solution: The proofs of all three parts are copied from Svensson [1]. Suppose first that
o; = oj for i > 1. Let f(>4,>4 ) =b. From strategyproofness it follows that a =, b,
and hence from the assumption of the lemma, a =1 b. Strategyproofness also implies
that b ot G and because preferences are strict it follows that a = b. The lemma now
follows after repeating this argument while changing the preferences for only ¢ = 2, then
1 =3, etc.



(b)

[5 points] Let f be a strategyproof and onto voting rule. Furthermore, let o =
(01,...,0p) be a preference profile and a,b € A such that a >, b for all ¢ € N. Then
f(o) #b.

Hint: use part (a).

Solution: Suppose that f(o) = b. Since f is onto there is a profile o’ such that
f(o') = a. Let 0" be such that for all i € N, a =51 b =,r z for all z € A\ {a,b}, and the

rest of the alternatives are ranked identically to o;. By strong monotonicity (part (a)),
b= f(o) = f(6") and a = f(6') = f(o”), which is a contradiction. Hence f(o) # b.
[10 points] Let m be the number of alternatives and n be the number of voters, and
assume that m > 3 and m > n. Furthermore, let f be a strategyproof and neutral voting
rule. Then f is dictatorial.
Note: There are many proofs of the full version of the Gibbard-Satterthwaite Theorem;
here the task is specifically to formalize the proof sketch we did in class.
Solution: For this part of the proof it is convenient to define the preferences of each
i € N via a utility function u; such that for z,y € A, x >, vy if and only if u;(x) > u;(y).
Therefore, f(u) is well defined. We will also denote A = {ay,...,amn}.
For each 1 € N, let

n+i—j i<j<n

ui(aj) =<i—j j<i
n—7j ji>n
That is, the ranking of aq, ..., a, is shifted, and all other alternatives are ranked below

them. By Pareto optimality (part b), f(u) = a; for some j < n. Assume w.l.o.g. that
f(u) = ay. Let v’ be defined as follows:

uy(a1) =n+2 and u)(a,) =n+1,
u,(an) =n+2 and uj(ay) =n+1 for i > 1,

u;(aj) = u;(a;j) otherwise

Hence all voters consider the alternatives a; and a,, to be better than the other alternatives.
Also note that the ranking of a; and a, is the same in the profiles © and u/; and in o/,
a1 and a,, are both ranked above other alternatives. Hence by strong monotonicity (part
(a)), f(u') = f(u) = a1.

Finally, define profiles u”* for k = 1,...,n, where u!

=/, and
uf () i #k+1
uf“(a:): u’,zH(:c) i=k+1landxz € A\ {a1}

—-m i=k+1and x = a1

By Pareto optimality (part (b)), f(u*) € {a1,a,}. But strategyproofness implies that
f(u*) = a1, and hence f(u") = a1. In u", a; is ranked at the top by voter 1, and at
the bottom by every other voter. Monotonicity (part (a)) implies that a; is the winner
whenever voter 1 puts a; at the top. Neutrality then implies that voter 1 is a dictator.



2. Consider a facility location game with n agents in which each agent controls k locations, and
denote the set of locations that agent ¢ controls by @; = (241, .., 2;). Therefore, the entire
location profile is @ = (x1,...,xy).

Let a deterministic mechanism in the multiple locations setting be defined as a function
f : R¥ x ... x R¥ = R; that is, it takes in a location profile and returns a single location
based on all the locations reported by each agent.

The cost of facility location y to an agent 7 is the sum of distances from y to each of the
locations that i controls, or costi(y, @i) = >_ ;e [y — @ij|. The social cost of a location y is
the sum of costs of each agent for location y:

cost(y, x) = Z Z ly — ;).

i€[n] je[k]

Consider the following mechanism for the facility location game in the multiple locations
setting.

MECHANISM 1

e For each agent i with reported locations x; = (x;1,...,2;), let med(x;) be the
median of these locations.

e Return the median of (med(xy),...,med(x,)).

Intuitively, Mechanism 1 creates a new bid for each agent at the median of the locations under
its control, and then returns the median of these new bids. When n is even the median refers
to the n/2 order statistic, but below you may assume that both n and k are odd when it
simplifies the proof.

(a) [5 points] Prove that Mechanism 1 is strategyproof.

Solution: First, we show that each agent i has single peaked preferences with peak
located at their median med(x;). Indeed, consider two points yi, yo with med(xz;) < y; <
y2 (y2 < y1 < med(a;) is symmetric). Let d = y2 — y1 be the distance moved to the right.
For simplicity, we suppose that k is odd. When moving the facility from y; to ys, the
distance from all (k + 1)/2 points located at or to the left of the median has increased
by d, while the remaining points (k — 1)/2 could have distance decreased by at most d.
Hence, cost;(y2, x;) > cost;(y1, x;), implying single peakedness.

Hence, Mechanism 1 is simply taking the median of agent peaks, which, as argued in the
slides, implies it is strategyproof.

(b) [20 points] Prove that Mechanism 1 is a 3-approximation algorithm for the social cost
in the multiple locations setting.
Solution: Fix preferences @ = (x1,..., ;). Let the true optimum location be a* and
the location returned by the mechanism be a.
First, we show that the number of total locations at or below a is at least nk/4 (and,
symmetrically, that the number of total locations at or above a is at least nk/4). The
proofs are symmetric; we only provide the former below.



Let {zj; : x;; < a} be the set of all locations that are to the left of a. Furthermore, let
Z; denote the median of agent i. Because Mechanism 1 returns the median of the z;
values, we know that at least half of the individual medians are below a. Further, we
know that at least half of each of these agents’ locations are below their median, so we
have [{xj; : z;; < a}| > nk/4. Symmetrically, we know that [{z;; : x;j; > a}| > nk/4.
Now, we look at the social cost of the facility location that the mechanism returns.
If a = a*, then sc(a,x)/sc(a*,x) = 1 and we are done. Next, suppose a # a*. Let
d = |a — a*| and WLOG assume a < a*. Then,

sc(a, ) =Y |z —al
2

= Z (a — :L‘ij) + Z (a — CL‘ij) + Z ($ij —a)
L,jzij<a 4,J:a<zi;<a* 0,J: Tij>a*

< Z (CL—:BZ']‘)—F Z d+ Z (d+(:):z-j—a*))
1,5:Ti5<a 1,7:a<z;;<a* 4,71 Ti5>a*

= Z (a—wij)—&—]{i,j D X4 >a}\d+ Z (xij—a*)
1,7 T <a 1,5: Ti5>a*

< Z (a—xil)+§nl<:d+ Z (xij —a™)

— J 4 J

1,J: Tij<a 1,5: i >a*

1
<3 Z (@ — xi5) + Z (xij—a*)—}—znk‘d

1,7: Ti5<a 1,7 Tij>a*

<3 Z (a -z +d) + Z (zij —a”)

1,7: Ti5<a 1,: Ti5>a*

<3| D a—wy+d+ D> (@ -zt Y. (wy—a)

1,5: Ti5<a 1,5:a<zi;<a* 1,: Ti5>a*
*
=3) |y —a|
(2]

=3 -sc(a”, ).

Thus, Mechanism 1 is a 3-approximation algorithm for social cost.

[15 points] Consider the case of two agents. Prove that for any € > 0, there exists a k
such that any strategyproof deterministic mechanism f : R* x R¥ — R cannot have an
approximation ratio better than 3 — ¢ for the social cost in the multiple locations setting.
Hint: After choosing k, first prove that for any strategyproof mechanism f, there must
exist distinct locations a,b € R such that

f((a,...,a),(b,...,b)) € {a,b}.

k k



(Note that you must prove this; you cannot assume it is true.)

Solution: Fix an arbitrary ¢ > 0. Let ¢ € N be such that 3 —¢ < % (0 =12/¢e]
will do). Choose k = 2¢ + 1. Fix an arbitrary strategyproof deterministic mechanism
f:RF x R¥ — R. We’ll show that f cannot have an approximation ratio better than

%, which implies it is not better than 3 — ¢, as needed.

To that end, we’ll begin by showing that there exist distinct points x1 # x9 € R such
that

f((@1, . 21), (2,00 @2)) € {21, 22} (1)
To show this, first, fix two arbitrary distinct points x # y and suppose

If z =2 or z =y, then we have found such points and we are done. On the other hand,
suppose z # z and z # y. Consider 2’ := f((z,...,z),(2,...,2)). We claim 2’ = z,
showing that x and z are our desired points. Indeed, if this was not the case, then
f would not be strategyproof, as agent 2 could benefit by deviating from (z,...,z) to
(y,...,y), improving from a location not at z (with positive cost) to one exactly at z
(with zero cost).

Fix such points x1, 9 satisfying Equation (1) and, without loss of generality, suppose
f((z1,...,21), (z2,...,22)) = z1. Now we claim that:

f((xl, e, L1, T2, ... ,CL‘Q), ($2, e ,1‘2)) =x. (2)
41 4

Indeed, as argued in part a), each agent’s most preferred location is the median of their

locations, so under the reported preferences for agent 1 in Equation (2), this remains ;.

If f did not choose x1, then it would not be strategyproof as agent 1 would benefit by

deviating to (z1,...,z1) (achieving their most desired location).

Finally, we claim that choosing z1 in (2) only provides an at least %—*‘11 approximation to

the optimal cost. Let d = |x9 — 21| be the distance between x; and x3. Note that the

cost of x1is ((+1)- 04+ (£ + k) -d = (304 1)d. On the other hand, the cost for x5 is only

(0+1)-d+ ({+k)-d= (£+1)d. This shows that the approximation to the social cost of

f is at most %, as needed.

3. This problem deals with the Hotelling model with policy-motivated candidates (slides 8-9 of
the “electoral competition” lecture). We showed (informally) that if 27 < m < z% then (m,m)
is the unique Nash equilibrium; this is more generally true when 7 < m < 3. Our goal is to
examine the (almost) complement case of z] < x5 < m, where (m,m) is no longer the unique
Nash equilibrium.

To avoid any ambiguity, let us make the following simplifying assumptions. As before, there are
two candidates. The distribution of voters is the uniform distribution over [0, 1], so m = 1/2.
For a winning position x;, the cost of candidate i is |z} — x;|, and if there is a tie between the
two candidate positions z1 and x5 then the cost of candidate i is 1 (|2} — 21| + |2} — 22]).

[20 points] Assuming that 27 < x5 < 1/2, prove that (x1,x2) is a Nash equilibrium if and
only if 25 < xg =21 <1/2 or (z2 = 2} and z1 < x2) or (2 = x5 and z1 > 1 — 23).



Note: Please prove both directions.

Solution: Fix values z7, 23, such that 27 < 25 < 1/2 and a pair (z1,z2).

We begin with the forward direction. Suppose (x1,x2) is a Nash equilibrium. We will first

prove

xg € [x5,1/2]. (3)

To that end, we handle each of several cases separately that cover all possible ways this could
be false, and show they are not in equilibrium.

This

Suppose zg < x5 and x1 > 25 and candidate 1 wins. Then, candidate 1 can increase her
payoftf by moving to 7.

Suppose z2 < x5 and x; > z3 and candidate 1 loses or ties. Then, candidate 2 can
increase her payoff by moving to 3.

Suppose z2 < x5 and z1 = x5. Then, candidate 1 can increase her payoff by moving to
Suppose z2 < x5 and z1 < x5. Then, candidate 2 can increase her payoff by moving to
Suppose x2 > 1/2 and 21 < x5. Then, candidate 2 can increase her payoff by moving to
Suppose 3 > 1/2 and 21 > 1/2. Then, candidate 2 can increase her payoff by moving to
1/2.

Suppose z2 > 1/2 and x5 < 21 < 1/2 and candidate 1 wins. Then, candidate 1
can increase her payoff by moving to a point in (max(1 — x9,z}), z1), which must be
a nonempty interval because candidate 1 is currently winning, so z; > 1 — x9, and
x> x5 > 7],

Suppose 2 > 1/2 and x5 < x1 < 1/2 and candidate 2 wins or ties. Then, candidate 2
can increase her payoff by switching to x1.

proves Equation (3). Now we split into two more cases, either x9 € (25,1/2] or zo = z5.

If 2o € (23,1/2], then we must have x; = 3. To show this, we show that all other cases
are not equilibria.
— Suppose x1 > xy and candidate 1 is winning or tied. Then, candidate 1 can improve
her payoff by moving to xs.
— Suppose 1 > xo and candidate 1 is losing. Then, candidate 2 can improve her payoff
by moving to a point in (1 — 21, x2), which must be nonempty because candidate 2
is currently winning.

— Suppose z1 < x2, then candidate 2 can improve her payoff by moving to 3.
This means it is true that x5 < xo = 21 < 1/2.

If x5 = x5, we claim that x; ¢ (23,1 — 23]. For any such value of z;, candidate 1 can
improve by moving to x3. This implies that either 1 < 235 or z; > 1 — z3, as needed.



Next we handle the reverse direction. First, suppose 23 < x2 = x; < 1/2. This is an
equilibrium because even though both candidates would prefer to move left, they cannot do so
without losing the election leaving the outcome the same. Next, suppose zo = x5 and either
x1 < x5 or 1 > 1 — z5. This is an equilibrium because even though candidate 1 wants to
move the outcome to the left, they cannot do so no matter what they report, and candidate 2
is already receiving their optimal payoff.

. In class we discussed the Mallows model, which gives an expression for the probability of a
ranking o given the ground truth m. So computing the probability of a given ranking is easy,
but how can we sample from this distribution?

Assume that a1 =5 a2 > -+ > am, and consider the following generative model, defined by
probabilities p;; for all ¢ = 1,...,m and j = 1,...,4, which iteratively constructs the ranking
o. In round 1, a; is inserted into the first (and only) position of the constructed ranking with
probability p1; = 1. In round 2, as is inserted into position 1 (above aj) with probability
p21 and into position 2 (below a1) with probability pee. More generally, in round 4, for each
Jj=1,...,1, a; is inserted into position j with probability p;;.

[20 points] Prove that the Mallows Model with parameter ¢ is equivalent to this generative

model with p;; = ¢t 11__;1 (This means that sampling rankings from the Mallows model is

indeed easy.)

Hint: You may use the fact that for all w# € L,

(1+¢)(1+¢+¢2>...(1+¢+...+¢m—l):Z(bdKT(TﬂT).

TEL

Solution: First, note that the insertion model is equivalent to generating a vector v of m
elements, where the i*" element is an integer in [1,1] corresponding to the location at which it
is inserted in the current subranking. It is clear that this vector uniquely defines a complete
ranking over all alternatives. Furthermore, the vector v that corresponds to the correct final
ranking is (1,2,...,m).

Now, given a vector v that generates a final ranking o, the Kendall-Tau distance between o
and 7 is the L1 norm between v and (1,2,...,m). That is, dgr(o,7) = > ;= (i — v;). This
is because when you put the " item in spot j < 4, this necessarily flips i — j comparisons
between item 7 and other items that are supposed to be ranked before it. The argument then
proceeds by induction on the number of elements.

The probability of any ranking p € I can be decomposed as follows:

PI‘[T&'] = P1,u(1)P2,0(2) - - - Pm,v(m)

_glrm 1= s l-¢ m—v(m) 1 — &
=o' 0

1- o2 1— om
_ (o= 2@ | gm—v(m)) _ (1= &)™
(61 ) M o

(because of the above fact)

_ gixripo) L= )"
[T (1 — k)

_¢dKT(P7U) 1_¢.1_¢ ..... 1-¢
N 1—¢ 1—¢2 1—¢m

7



:qbdKT(PaO') (1.1..... 1 )
1+ 1+¢+---4o¢pmt
1

_ ¢dKT(p’U)

Z ¢dKT(T,U) : (by the hint)
TEL

This is the same as the Mallows model, so by setting p;; = p I 11%(;?1

we get the Mallows ¢-model.

in the insertion model,
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