

Optimized Democracy

Fall 2025

Distortion

Ariel Procaccia | Harvard University

MOTIVATION

- The goal of social choice is to aggregate individual preferences or opinions towards a socially desirable outcome
- Axioms attempt to capture social desirability, but they don't identify the "best" rule
- Perhaps we can quantify how socially desirable a rule is through social welfare?
- The challenge is that we don't know the voters' cardinal preferences — only their ordinal preferences

MOTIVATION

Preference profile

	1	2	3	4
a	1/4	0	0	0
b	1/4	1	1/2	1/2
С	1/4	0	1/2	0
d	1/4	0	0	1/2

Utility profile

- W.l.o.g. the plurality winner is *a*
- But supposed the preference profile is induced by the utility profile on the right
- Social welfare of *a* is 1/4, whereas that of *b* is 9/4
 9 times as high!

UTILITARIAN DISTORTION

- As usual, we have a set of voters N of size n
 and a set of alternatives A of size m
- Each voter $i \in N$ has a utility function $u_i: A \to \mathbb{R}^+$
- $u = (u_1, ..., u_n)$ is a utility profile
- Assume that for all $i \in N$, $\sum_{x \in A} u_i(x) = 1$
- u_i induces a ranking σ_i , denoted $u_i > \sigma_i$, if $x >_{\sigma_i} y \Rightarrow u_i(x) \ge u_i(y)$

UTILITARIAN DISTORTION

- Denote the (utilitarian) social welfare of $x \in A$ by $sw(x, \mathbf{u}) = \sum_{i \in N} u_i(x)$
- For a preference profile σ and $x \in A$, the utilitarian distortion of x at σ is

$$\operatorname{dist}_{u}(x, \boldsymbol{\sigma}) = \max_{y \in A} \max_{\boldsymbol{u} > \boldsymbol{\sigma}} \frac{\operatorname{sw}(y, \boldsymbol{u})}{\operatorname{sw}(x, \boldsymbol{u})}$$

• The utilitarian distortion of $f: \mathcal{L}^n \to A$ is $\operatorname{dist}_u(f) = \max_{\sigma \in \mathcal{L}^n} \operatorname{dist}(f(\sigma), \sigma)$

Poll 1

Consider two conditions: (i) everyone ranks x first in σ , (ii) dist $_u(x, \sigma) = 1$. What's the relation between them?

• (i) \Rightarrow (ii)

• (i) ⇔ (ii)

• (ii) \Rightarrow (i)

Incomparable

UTILITARIAN DISTORTION: EXAMPLE

Suppose we choose a In the profile σ

		1	2	3		1	2	3
(a	1/3	0	0	а	1/3	0	0
j	b	1/3	1	1	b	1/3	1	1/2
	С	1/3	0	0	С	1/3	0	1/2
$\max_{\mathbf{u} \triangleright \sigma} \frac{\mathrm{sw}(b, \mathbf{u})}{\mathrm{sw}(a, \mathbf{u})} = 7 \qquad \max_{\mathbf{u} \triangleright \sigma} \frac{\mathrm{sw}(c, \mathbf{u})}{\mathrm{sw}(a, \mathbf{u})} = \frac{5}{2}$								
$\Rightarrow \operatorname{dist}_{u}(a, \boldsymbol{\sigma}) = 7$								

Poll 2

What is $dist_u(b, \sigma)$?

- 1
- In [1,2)

- In [2,3)
- In [3, ∞)

LOWER BOUND

- Theorem: For any $f: \mathcal{L} \to A$, $\operatorname{dist}_u(f) = \Omega(m^2)$
- Proof:
 - Let σ such that the voters are partitioned into sets N_1, \dots, N_{m-1} , each of size (roughly) n/(m-1)
 - The voters in N_i rank a_i first and a_m second
 - It holds that $dist(a_m, \sigma) = \infty why$?
 - If $f(\sigma) = a_i \neq a_m$, consider u such that N_i have utility 1/m for all alternatives, and other voters have utility $\frac{1}{2}$ for the top two choices
 - It holds that

$$\operatorname{sw}(a_i, \boldsymbol{u}) = \frac{n}{m-1} \cdot \frac{1}{m}, \quad \operatorname{sw}(a_m, \boldsymbol{u}) \ge \frac{1}{2} \cdot \left(n - \frac{n}{m-1}\right) = \Omega(n)$$

Overall, it holds that

$$\operatorname{dist}_{u}(f) \ge \operatorname{dist}_{u}(f(\boldsymbol{\sigma}), \boldsymbol{\sigma}) \ge \frac{\operatorname{sw}(a_{m}, \boldsymbol{u})}{\operatorname{sw}(a_{i}, \boldsymbol{u})} = \Omega(m^{2}) \blacksquare$$

UPPER BOUND

- Which voting rule might achieve a good ideally $O(m^2)$ upper bound on distortion?
- Let's try to rule out a few candidates

Poll 3

Which rule has unbounded distortion?

- Plurality
- Borda count

- Both rules
- Neither one

UPPER BOUND

- Theorem: $dist_u(plurality) = O(m^2)$
- Proof:
 - Given a preference profile σ , let the plurality winner be x
 - x is ranked first by at least n/m voters
 - Let $u > \sigma$, then

$$\operatorname{sw}(x, \boldsymbol{u}) \ge \frac{n}{m} \cdot \frac{1}{m} = \frac{n}{m^2}$$

- ∘ For any $y \in A$, sw $(y, \mathbf{u}) \le n$
- It follows that

$$\operatorname{dist}_{u}(\operatorname{plurality}) \leq \frac{n}{n/m^2} = m^2 \blacksquare$$

INSTANCE OPTIMALITY

- The instance-optimal rule f^* satisfies $f^*(\sigma) \in \operatorname{argmin}_{x \in A} \operatorname{dist}_u(x, \sigma)$
- It holds that $dist_u(f^*) = \Theta(m^2)$
- This rule is easy to compute:

	1	2	3
a	1/3	0	0
b	1/3	1	1/2
С	1/3	0	1/2

Construct a utility profile that maximizes $\frac{SW}{SW}$

METRIC DISTORTION

- Voters and alternatives lie in a latent metric space with metric ρ
- The preference profile is induced by the metric
- We are interested in minimizing the social cost, denoted $sc(x, \rho) = \sum_{i \in N} \rho(i, x)$

METRIC DISTORTION

• Assume that σ is induced by a metric ρ satisfying:

$$\forall x, y \in A, x \succ_{\sigma_i} y \Rightarrow \rho(i, x) \leq \rho(i, y)$$

- Symmetry: $\forall \alpha, \beta, \ \rho(\alpha, \beta) = \rho(\beta, \alpha)$
- Triangle inequality: $\forall \alpha, \beta, \gamma$, $\rho(\alpha, \beta) \leq \rho(\alpha, \gamma) + \rho(\gamma, \beta)$
- Redefine distortion of x at σ :

$$\operatorname{dist}_{m}(x, \boldsymbol{\sigma}) = \max_{y \in A} \max_{\rho \rhd \boldsymbol{\sigma}} \frac{\operatorname{sc}(x, \rho)}{\operatorname{sc}(y, \rho)}$$

• As before, the distortion of f is $\operatorname{dist}_m(f) = \max_{\sigma \in \mathcal{L}^n} \operatorname{dist}_m(f(\sigma), \sigma)$

LOWER BOUND

- Theorem: For all $f: \mathcal{L}^n \to A$, dist_m $(f) \ge 3$
- Proof:
 - Consider a preference profile σ where $a \succ_{\sigma_1} b$ and $b \succ_{\sigma_2} a$
 - W.l.o.g. $f(\boldsymbol{\sigma}) = a$
 - Then consider the metric space below

a

a > b

UPPER BOUND

- The PluralityVeto rule works as follows:
 - The score of each alternative is initialized to its plurality score
 - One by one (in arbitrary order), voters decrement the score of their least preferred surviving alternative
 - Alternatives whose score is 0 are eliminated
 - Last alternative to be vetoed wins
- Theorem: $dist_m(PluralityVeto) \le 3$
- Proof from "the Book"

PROOF OF THEOREM

Let z_i be the alternative vetoed by $i \in N$, let x^* be the PluralityVeto winner, let N_x be the voters ranking x first, and let $y \in A$

$$\sum_{i \in N} \rho(i, x^*) \leq \sum_{i \in N} \rho(i, z_i) \qquad (x^* \geqslant_{\sigma_i} z_i \text{ for all } i \in N)$$

$$\leq \sum_{i \in N} \left(\rho(i, y) + \rho(y, z_i) \right) \qquad (\text{triangle inequality})$$

$$\leq \sum_{i \in N} \rho(i, y) + \sum_{x \in A} \sum_{j \in N_x} \rho(y, x) \qquad (\text{#vetoes of } x \text{ is } |N_x|)$$

$$\leq \sum_{i \in N} \rho(i, y) + \sum_{x \in A} \sum_{j \in N_x} \left(\rho(j, y) + \rho(j, x) \right) \qquad (\text{triangle inequality})$$

$$\leq \sum_{i \in N} \rho(i, y) + \sum_{x \in A} \sum_{j \in N_x} 2\rho(j, y) \qquad (i \in N_x \Rightarrow x \geqslant_{\sigma_i} y)$$

$$= 3 \sum_{i \in N} \rho(i, y) \quad \blacksquare$$

PROOF OF THEOREM

Voters veto clockwise from top, vetoed alternative shown in red. Outcome is $x^* = b$ and its social cost is compared to the optimum, d.

DISTORTION OF VOTING RULES

Rule	Metric distortion
k -approval ($k \ge 2$)	Unbounded
Plurality, Borda count	$\Theta(m)$
Best positional scoring rule	$\Omega(\sqrt{\log m})$
IRV	$O(\log m), \Omega(\sqrt{\log m})$
Copeland	5
PluralityVeto	3

RANDOMIZED RULES

- Can randomized rules achieve better distortion?
- The utilitarian distortion of the best randomized rule is $\Theta(\sqrt{m})$
- The metric distortion of the best randomized rule is between 2.112 and 2.753

BIBLIOGRAPHY

- A. D. Procaccia and J. S. Rosenschein. The Distortion of Cardinal Preferences in Voting. CIA 2006.
- E. Anshelevitch, O. Bhardwaj, E. Elkind, J. Postl, and P. Skowron. Approximating Optimal Social Choice Under Metric Preferences. Artificial Intelligence, 2018.
- F. E. Kizilkaya and D. Kempe. Plurality Veto: A Simple Voting Rule Achieving Optimal Metric Distortion. IJCAI 2022.