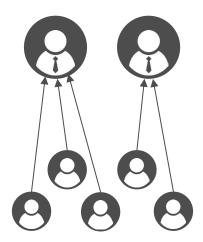


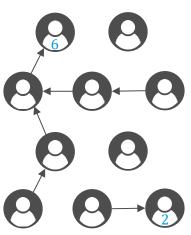
Optimized Democracy

Fall 2025
Liquid Democracy
Ariel Procaccia | Harvard University

FORMS OF DEMOCRACY

Representative democracy



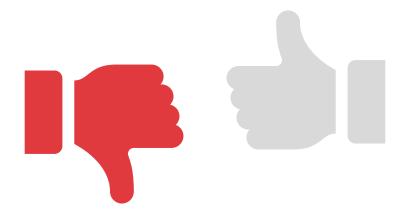


LIQUID DEMOCRACY SYSTEMS

LiquidFeedback
Germany
Since 2010

DemocracyOS
Argentina
Since 2012

Flux Australia Since 2016



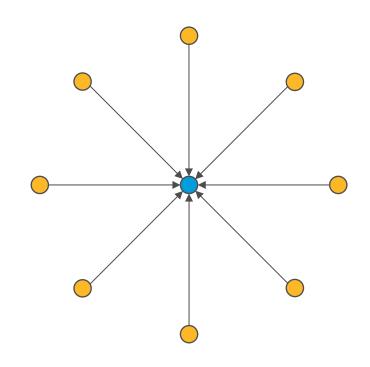
Part I: Bad news in an objective model

THE MODEL

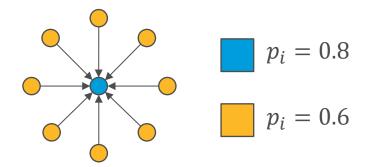
- Underlying labeled directed graph $G = (V, E, \mathbf{p})$ on n vertices, where V is the set of voters, and $(i, j) \in E$ if i knows j
- There are two alternatives, correct and incorrect
- Decisions are made based on majority vote
- Each voter i has a competence level p_i , which is their probability of voting correctly
- i approves j if $(i,j) \in E$ and $p_i > p_i + \alpha$
- Denote i's approved neighbors by $A_G(i)$

LIQUID VS. DIRECT DEMOCRACY

- Consider a star with n vertices; leaves have $p_i = 0.4$, center has $p_i = 0.8$, and $\alpha < 0.4$
- Direct democracy: By the Condorcet Jury Theorem, probability that majority is correct $\rightarrow 0$ as $n \rightarrow \infty$
- Under liquid democracy, all leaves delegate, and the probability of correctness is 0.8



LIQUID VS. DIRECT DEMOCRACY



Poll 1

Which system would be more accurate if we raised the competence levels of the leaves to 0.6 and set $\alpha < 0.2$?

DELEGATION MECHANISMS

- Can we give liquid democracy an edge via smarter delegation?
- A delegation mechanism observes G and the approval relation, and outputs for each $i \in V$ a probability distribution over $A_G(i) \cup \{i\}$ that represents the probability that i delegates their vote to each approved neighbor or votes directly
- Denote the probability that delegation mechanism M makes a correct decision on G by $P_M(G)$

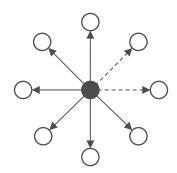
DELEGATION MECHANISMS

- $P_M(G)$ is defined via the following process:
 - 1. Apply M to G
 - 2. Sample the probability distribution for each vertex to obtain an acyclic delegation graph, where each sink *i* of the delegation graph has weight equal to the number of vertices with directed paths to *i*, including *i*
 - 3. Each sink i votes for the correct alternative with probability p_i
 - 4. A decision is made based on weighted majority

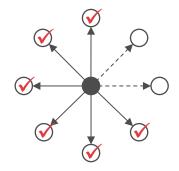
LOCAL DELEGATION MECHANISMS

In a local delegation mechanism, the distribution of each vertex i depends only on $\{j \in V : (i, j) \in E\}$ and $A_G(i)$

Examples:

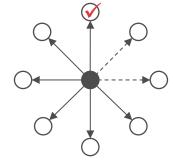


Direct voting: no delegation



Delegate to a random approved neighbor

Delegate to a random approved neighbor if most neighbors are approved

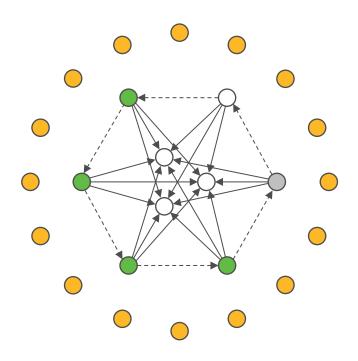


Delegate to a specific approved neighbor

FIRST, DO NO HARM

- Define gain $(M,G) = P_M(G) P_D(G)$, where D is direct voting
- Mechanism M satisfies the do no harm (DNH) property if for every $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that on all graphs G_n on $n \geq n_0$ vertices, gain $(M, G_n) \geq -\epsilon$
- Mechanism M satisfies the positive gain (PG) property if there exist $\gamma > 0$ and graph G such that gain $(M, G) \ge \gamma$
- Theorem: For any $\alpha \in [0,1)$, there is no local delegation mechanism that satisfies the DNH and PG properties

PROOF BY ILLUSTRATION



High competence

$$p_i = \frac{1 + \alpha'}{2}$$

Medium competence

$$p_i = \text{mess}$$

Low competence

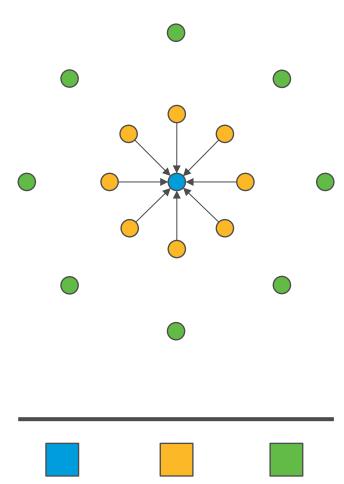
$$p_i = \frac{1 - \alpha'}{2}$$

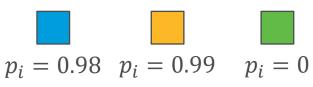
Liquid Democracy

Web Platform Makes Professor Most Powerful Pirate

EXTENSIONS

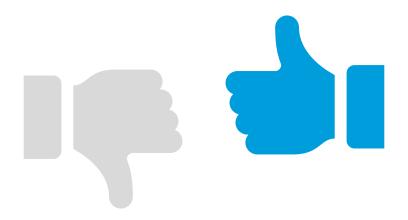
- Delegating to less competent voters can be highly beneficial
- Consider a star with k leaves where the center has $p_i =$ 0.98 and the leaves have $p_i =$ 0.99, add *k* isolated vertices with $p_i = 0$
- When all vertices vote independently the probability of success $\rightarrow 0$ as $k \rightarrow \infty$, but when the center votes for the entire star, the probability of success is 0.98





EXTENSIONS

- Is there a recipe for detecting the best possible delegations?
- In the Optimal Delegation problem, we are given a labeled graph (including competence levels), and asked to coordinate delegations to maximize the probability of selecting the correct alternative
- Theorem: Approximating the optimal value of Optimal Delegation within an additive term of 1/16 is NP-hard



Part II: Generally good news in a subjective model with optional participation

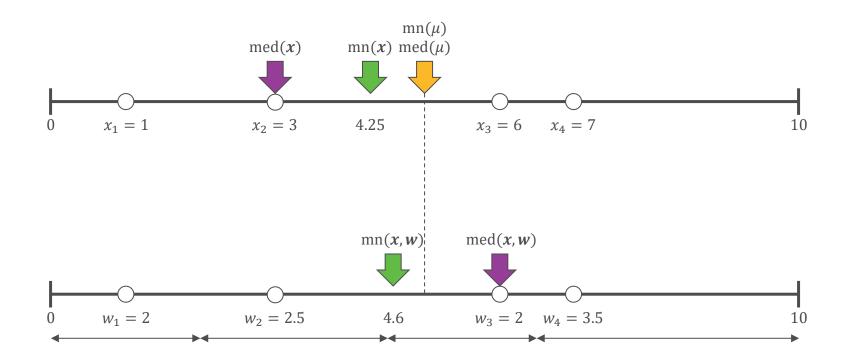
THE MODEL

- Infinite population of voters given by a distribution μ over the interval [a, b]
- Set *N* of *n* proxies with locations $x \in [a, b]^n$
- Under direct democracy, only the voters in N vote and we compute the median med(x) or the mean mn(x)
- Under liquid democracy, each voter in the population delegates to the closest proxy, leading to weights w, and we compute the median med(x, w) or the mean mn(x, w)

LIQUID VS. DIRECT REDUX

- We are interested in the median of the population $med(\mu)$ or the mean of the population $mn(\mu)$
- Direct democracy is evaluated via $|\text{med}(\mu) \text{med}(x)|$ or $|\text{mn}(\mu) \text{mn}(x)|$
- Liquid democracy is evaluated via $|\text{med}(\mu) \text{med}(x, w)|$ or $|\text{mn}(\mu) \text{mn}(x, w)|$

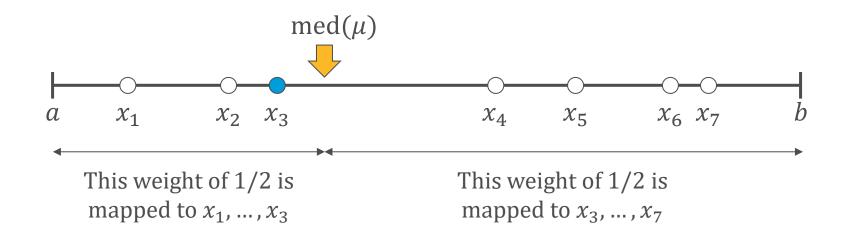
LIQUID VS. DIRECT REDUX



 μ is the uniform distribution over [0,10]

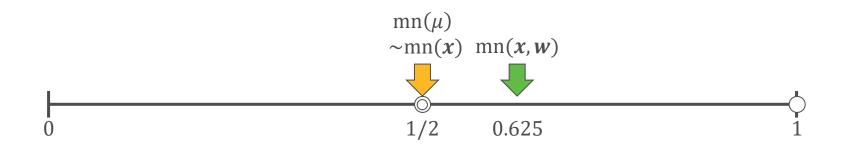
VOTING FOR THE MEDIAN

- Theorem: For any $n \in \mathbb{N}$, $x \in [a, b]^n$ and distribution μ , $|\operatorname{med}(\mu) \operatorname{med}(x, w)| \leq |\operatorname{med}(\mu) \operatorname{med}(x)|$
- Proof: med(x, w) is always the x_i that is closest to $med(\mu)$, as shown below



VOTING FOR THE MEAN

- Theorem: Let n = 2, then for any $x \in [a, b]^n$ and distribution μ (conditions apply), $|\operatorname{mn}(\mu) \operatorname{mn}(x, w)| \leq |\operatorname{mn}(\mu) \operatorname{mn}(x)|$
- This result doesn't hold for $n \ge 3$: consider the uniform distribution over [0,1] and $x_1, ..., x_{1000} = 1/2$ while $x_{1001} = 1$



SAMPLING TO THE RESCUE?

 This counterexample wouldn't arise if x_1, \dots, x_n were sampled independently from the distribution μ

Poll 2

Suppose μ is the uniform distribution over [a, b] and x_1, \dots, x_n are sampled independently from μ . Which of mn(x) and mn(x, w) approaches $mn(\mu)$ as $n \to \infty$?

- Only mn(x) Only mn(x, w) Both Neither

BIBLIOGRAPHY

- A. Kahng, S. Mackenzie, and A. D. Procaccia. Liquid democracy: An Algorithmic Perspective. Journal of Artificial Intelligence Research, 2021.
- I. Caragiannis and E. Micha. A Contribution to the Critique of Liquid Democracy. IJCAI 2019.
- G. Cohensius, S. Manor, R. Meir, E. Meirom and A. Orda. Proxy Voting for Better Outcomes. AAMAS 2017.