
Optimized Democracy (Spring 2024)

Problem Set #2

Due: 2/27/2024 11:59pm ET

Instructions:

• It is fine to look up a complicated sum or inequality, but please do not look up an entire
solution. In particular, the solutions to many of the problems that we give can be found in
papers, but, needless to say, you should avoid reading the proof if you come across the relevant
paper. If for some reason you did see the solution before working it out yourself, please say so
in your solution.

• You may discuss the problems with classmates but please write down solutions completely on
your own.

• Please type up your solution and submit to Gradescope.

Problems:

1. This problem deals with the Hotelling model with policy-motivated candidates (slides 8–9
of Lecture 5). We showed (informally) that if x⋆1 < m < x⋆2 then (m,m) is the unique Nash
equilibrium; this is more generally true when x⋆1 ≤ m ≤ x⋆2. Our goal is to examine the (almost)
complement case of x⋆1 < x⋆2 < m, where (m,m) is no longer the unique Nash equilibrium.

To avoid any ambiguity, let us make the following simplifying assumptions. As before, there are
two candidates. The distribution of voters is the uniform distribution over [0, 1], so m = 1/2.
For a winning position xj , the cost of candidate i is |x⋆i − xj |, and if there is a tie between the
two candidate positions x1 and x2 then the cost of candidate i is 1

2(|x
⋆
i − x1|+ |x⋆i − x2|).

[15 pt] Assuming that x⋆1 < x⋆2 < 1/2, prove that (x1, x2) is a Nash equilibrium if and only if
x⋆2 < x2 = x1 ≤ 1/2 or (x2 = x⋆2 and x1 ≤ x2) or (x2 = x⋆2 and x1 > 1− x⋆2).

Note: Please prove both directions.

2. In class we discussed the Mallows model, which gives an expression for the probability of a
ranking σ given the ground truth π. So computing the probability of a given ranking is easy,
but how can we sample from this distribution?

Assume that a1 ≻π a2 ≻π · · · ≻π am, and consider the following generative model, defined by
probabilities pij for all i = 1, . . . ,m and j = 1, . . . , i, which iteratively constructs the ranking
σ. In round 1, a1 is inserted into the first (and only) position of the constructed ranking with
probability p11 = 1. In round 2, a2 is inserted into position 1 (above a1) with probability
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p21 and into position 2 (below a1) with probability p22. More generally, in round i, for each
j = 1, . . . , i, ai is inserted into position j with probability pij .

[20 points] Prove that the Mallows Model with parameter ϕ is equivalent to this generative
model with pij = ϕi−j 1−ϕ

1−ϕi . (This means that sampling rankings from the Mallows model is

indeed easy.)

Hint: You may use the fact that for all π ∈ L,

(1 + ϕ)(1 + ϕ+ ϕ2) · · · (1 + ϕ+ · · ·+ ϕm−1) =
∑
τ∈L

ϕdKT (τ,π).

3. A shortcoming of the epistemic approach we discussed in class is that the “optimal” rule
depends on the details of the noise model. For example, Kemeny is an MLE with respect to
the Mallows model, but wouldn’t be an MLE if the noise had a different form. In this problem
we will instead explore a worst-case epistemic approach.

Let L be the set of rankings over alternatives. Let

d : L × L → [0,∞)

be a metric over L, which means that, for any rankings σ1, σ2, σ3 ∈ L,

• d(σ1, σ2) = 0 ⇐⇒ σ1 = σ2,

• d(σ1, σ2) = d(σ2, σ1), and

• d(σ1, σ3) ≤ d(σ1, σ2) + d(σ2, σ3) (this is called the triangle inequality).

Think of d as an abstract way of measuring the distance between two preference rankings. For
example, it is easily verified that dKT satisfies all three axioms.

Suppose that there is some ground truth ranking π ∈ L, and we are given an input preference
profile σ = (σ1,σ2, . . . ,σn) ∈ Ln with the guarantee that the average distance between π and
rankings in σ is at most some constant t ≥ 0. That is, we assume

π ∈ Bt(σ) := {τ ∈ L | d(σ, τ) ≤ t},

where

d(σ, τ) :=
1

n

∑
i∈N

d(σi, τ).

We then choose π̂ ∈ L to minimize the worst-case distance from π̂ to the unknown ground
truth π. Under this process, the worst-case distance to the ground truth is given by

k := max
σ∈Ln

min
π̂∈L

max
π∈Bt(σ)

d(π̂, π).

We seek to understand the behavior of k as a function of t (as it turns out, n and d don’t
matter too much).

Prove the following statements:
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(a) [8 points] k ≤ 2t. In words, given σ whose average distance from π is at most t it is
always possible to find a ranking π̂ ∈ L that is guaranteed to be at distance at most 2t
from π.

(b) [12 points] Suppose that, instead of allowing for an arbitrary π̂ ∈ L, we require that π̂
be one of the rankings σi of the input profile σ, i.e., define

k′ := max
σ∈Ln

min
i∈N

max
π∈Bt(σ)

d(σi, π).

Then k′ ≤ 3t.

(c) [10 points] Assume that t is in the image of d. Then k ≥ t
2 .

(d) [15 points] Assume that t is in the image of d, and that d is neutral (i.e., the distance
between two rankings is invariant to renaming the alternatives). Then k ≥ t.

Hint: Start from a profile σ in which all voters have the same ranking σ ∈ L. Also note
that neutrality and the assumption that t is in the image of d imply that for any ranking
π ∈ L there is a ranking π′ ∈ L such that d(π, π′) = t.

4. Recall the epistemic liquid democracy model, which was introduced and analyzed in Lecture 7
slides 5–12. We saw that local delegation mechanisms cannot satisfy do no harm (DNH) and
positive gain (PG).

Now consider the following non-local delegation mechanism. For each voter i = 1, . . . , n,
if AG(i) ̸= ∅ (i approves other voters), the mechanism determines the lowest j such that i
approves j, that is, j = minAG(i). Then i delegates to j if and only if j has not already
delegated their vote and there is no other voter who has already delegated to i or j. Intuitively,
under this mechanism, some delegations could take place but no voter would ever have a
weight of more than 2.

For simplicity, let us fix α = 0.1 for this problem, that is, i approves j if and only if (i, j) ∈ E
and pj > pi + 0.1.

(a) [5 pt] Show that the above mechanism satisfies PG.

(b) [15 pt] Show that the above mechanism does not satisfy DNH.

Note and hint: This is surprising because the mechanism prevents the problem of
voters amassing large weight. It turns out that the mechanism does satisfy DNH with an
additional assumption: for all i ∈ N , pi ∈ [β, 1 − β] for β > 0. Here you are asked to
give a family of counterexamples that would necessarily have to violate this assumption;
in particular, some voters can have pi = 0 or pi = 1.
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