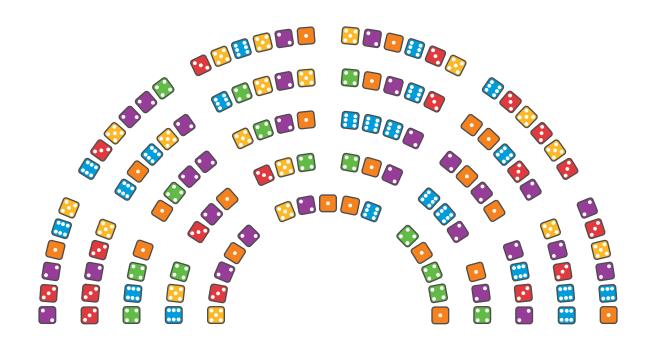


Optimized Democracy

Spring 2024 | Lecture 14
Sortition

Ariel Procaccia | Harvard University

HERE'S A RANDOM IDEA



Sortition—democracy built on lotteries instead of elections

A BRIEF HISTORY OF SORTITION

462-322 BC

Athens

Council of 500 and magistracies chosen by lot

1328-1530

Florence

The government and legislative council chosen by lot

1776-present

USA

American and French revolutions make democracy synonymous with elections

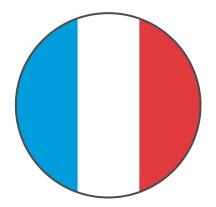
21st Century

Worldwide

Citizens'
assemblies
organized by local
and national
governments

RANDOM ASSEMBLY REQUIRED

Ireland 2016 Constitution

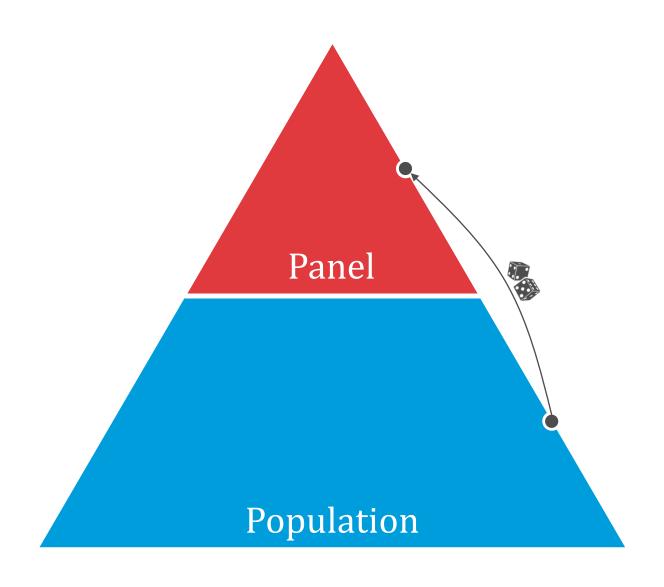


France 2019-2020 Climate

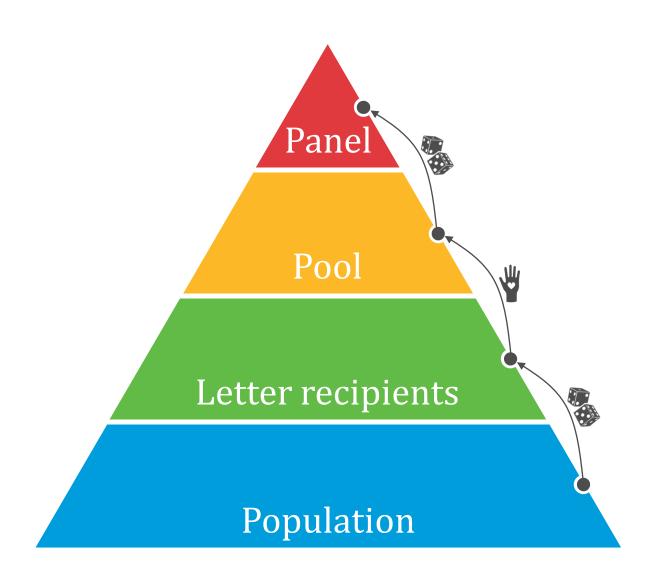
Belgium
Since 2019
Permanent

https://www.youtube.com/watch?v=EDGp5eGnnxI

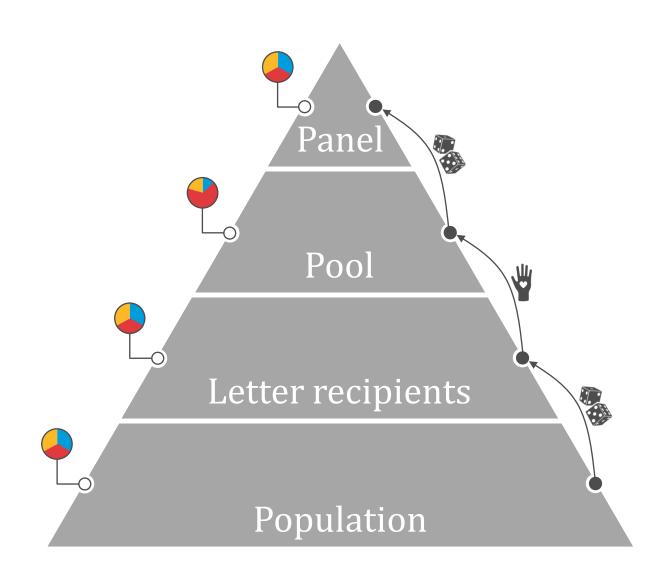
IDEAL SORTITION PIPELINE



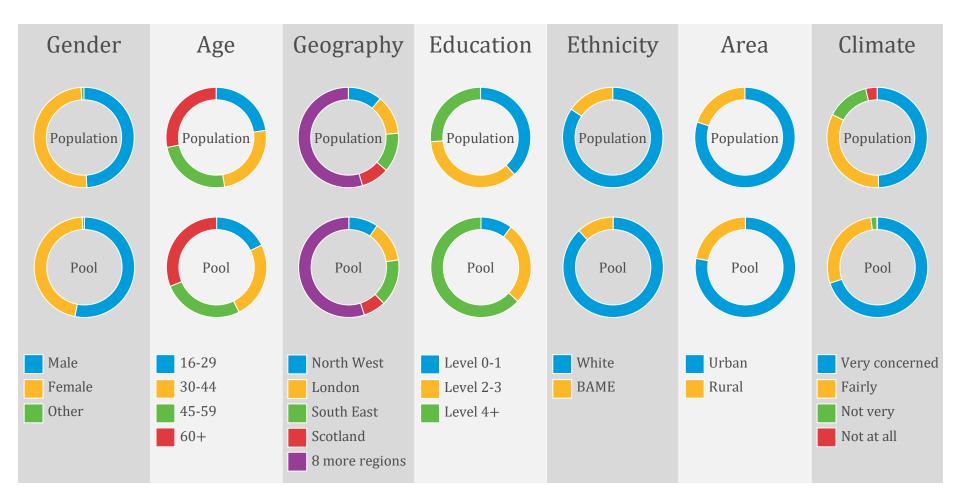
ACTUAL SORTITION PIPELINE



ACTUAL SORTITION PIPELINE

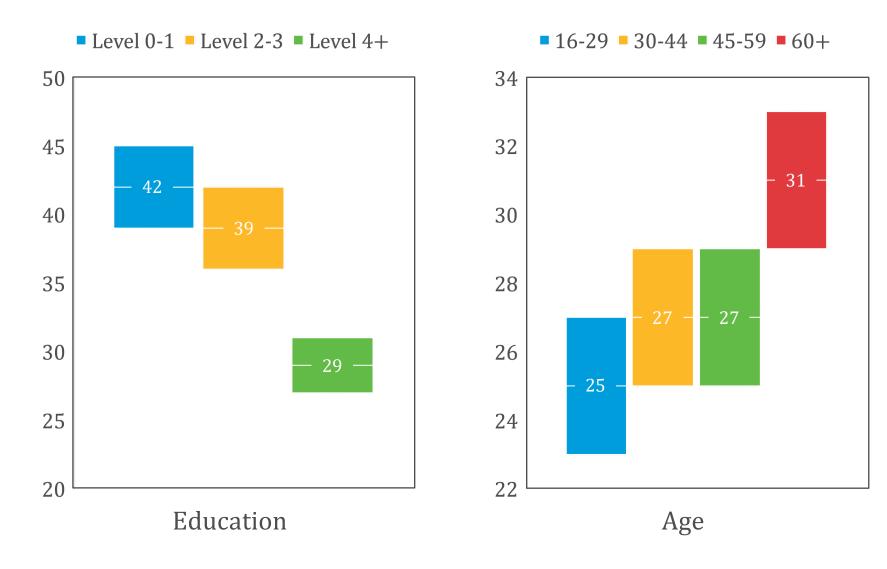


FEATURES



Climate Assembly UK (2020) Pool size is n = 1727, panel size is k = 110

QUOTAS



THE SORTITION MODEL

- Set of features F, where each $f \in F$ has a set of values V_f
- Multiset of n volunteers N where each $x \in N$ is a vector of feature values
- For each $f \in F$ and $v \in V_f$ there is an upper quota $u_{f,v}$ and a lower quota $\ell_{f,v}$
- The goal is to choose a panel P of k volunteers such that for all $f \in F$, $v \in V_f$, $\ell_{f,v} \leq |\{x \in P : x_f = v\}| \leq u_{f,v}$
- Finding a quota-feasible panel is NP-hard

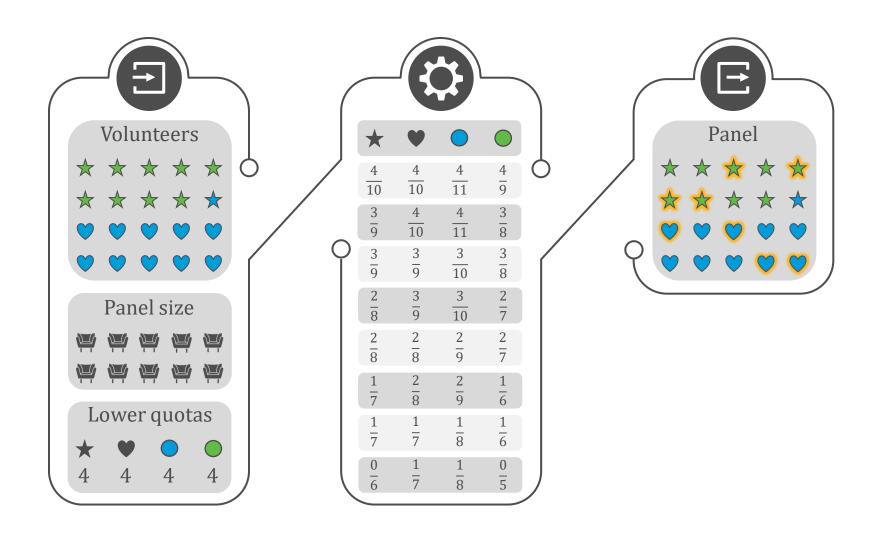
A GREEDY ALGORITHM

- At time t, a partial panel P_t has been selected $(P_0 = \emptyset)$
- For each $f \in F$, $v \in V_f$ define the score of v to be

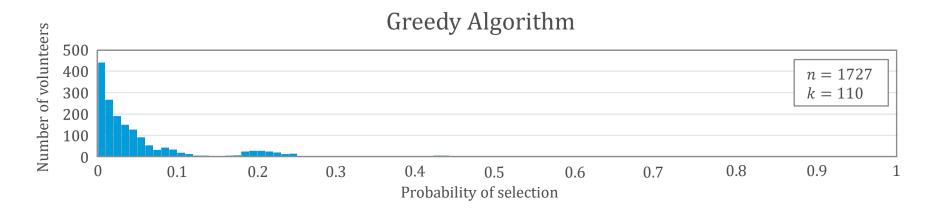
$$\frac{\ell_{f,v} - \left| \left\{ x \in P_t \colon x_f = v \right\} \right|}{\left| \left\{ x \in N \setminus P_t \colon x_f = v \right\} \right|}$$

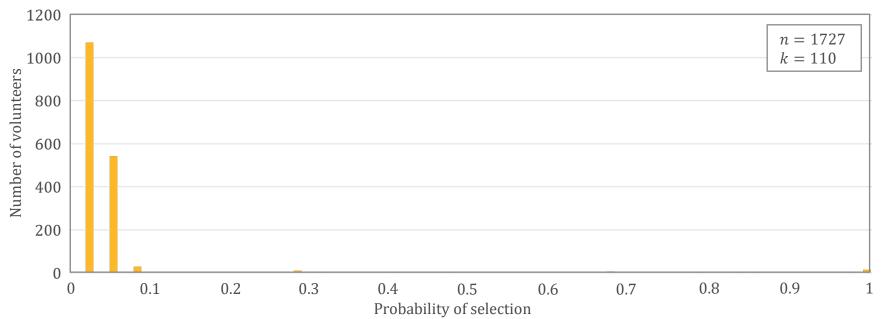
- For v with maximum score, select uniformly at random among $x \in N \setminus P_t$ such that $x_f = v$
- When all lower quotas have been filled, select uniformly at random among $N \setminus P_t$
- If any quotas cannot be satisfied, restart

A GREEDY ALGORITHM

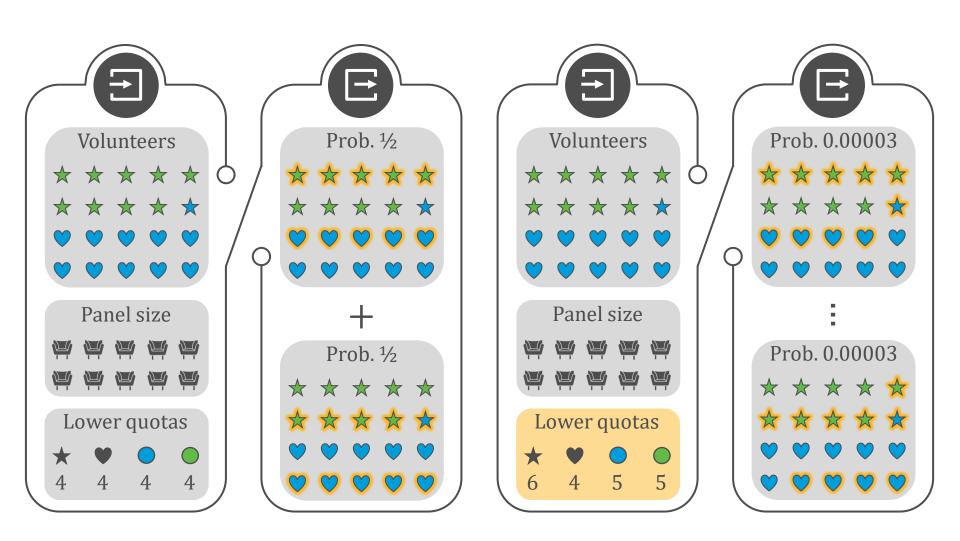


A GREEDY ALGORITHM

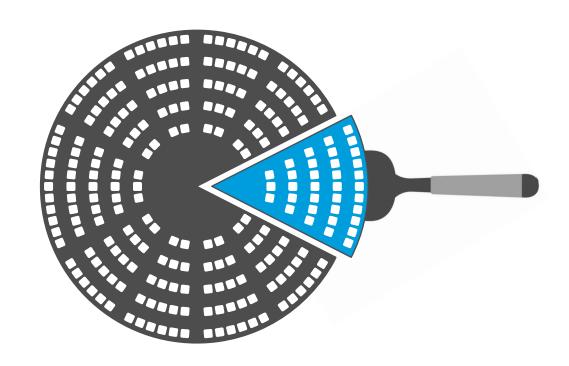




LOADING THE DICE



FROM SORTITION TO FAIR DIVISION



A distribution over panels of size k divides overall selection probability of k between pool members

ALLOCATION RULES

- An allocation rule outputs a distribution $\mathcal D$ over quota-feasible panels of size k
- Maximum Nash Welfare maximizes the product $\prod_{x \in N} \Pr_{P \sim \mathcal{D}} [x \in P]$
- Leximin maximizes min $\Pr_{x \in N} [x \in P]$, subject to that max the second lowest probability, etc.

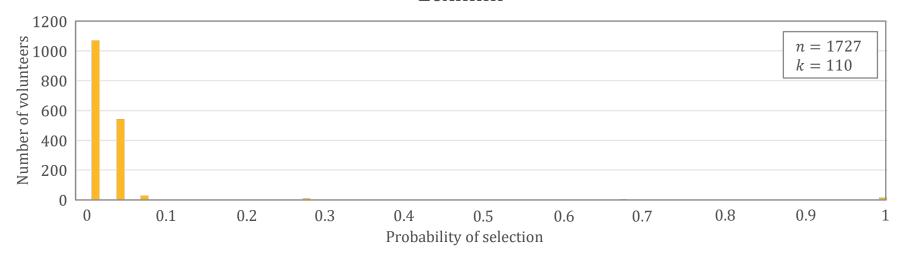
Poll

Which of the two rules equalizes volunteers' selection probabilities whenever the quotas make it feasible to do so?

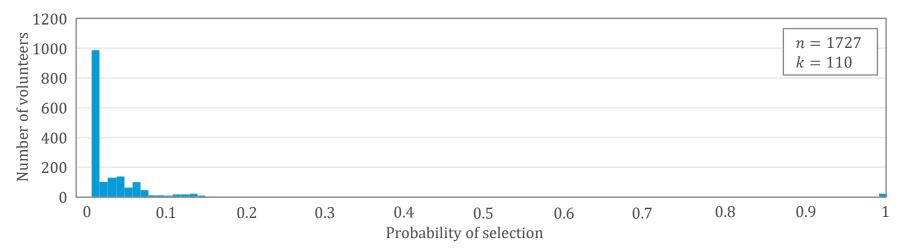
• MNW • Leximin • Both rules • Neither one

MYSTERY CHALLENGER UNMASKED

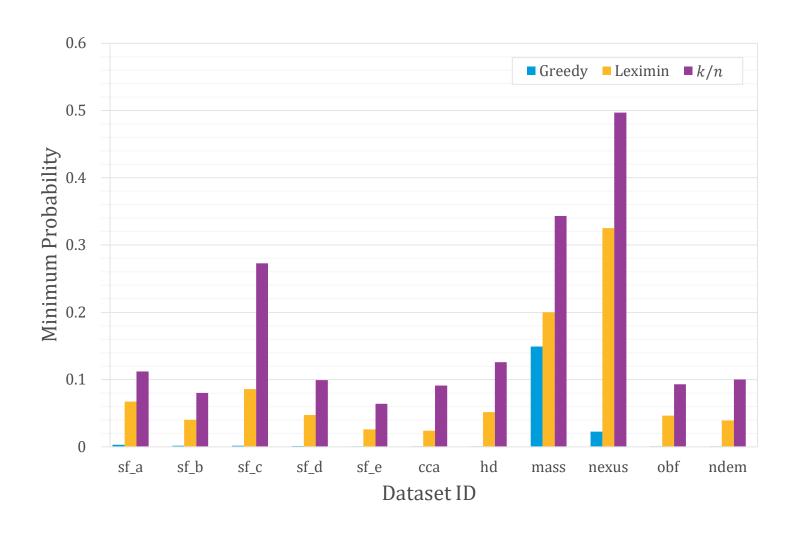
Leximin



Nash Welfare

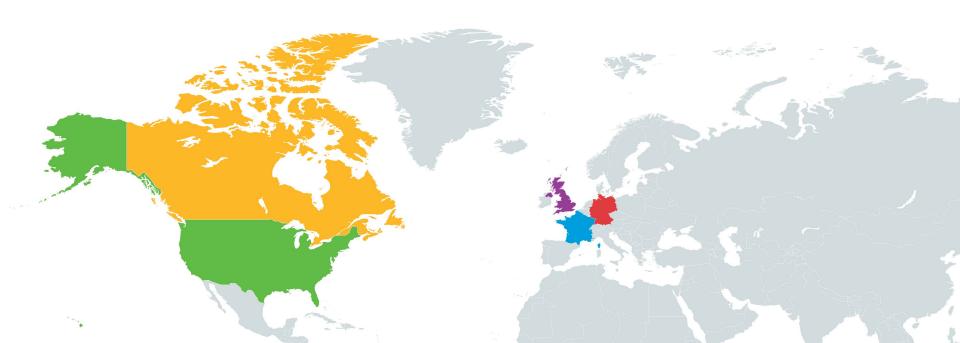


EVERYONE DESERVES A FAIR CHANCE



Online at panelot.org

DEPLOYMENT



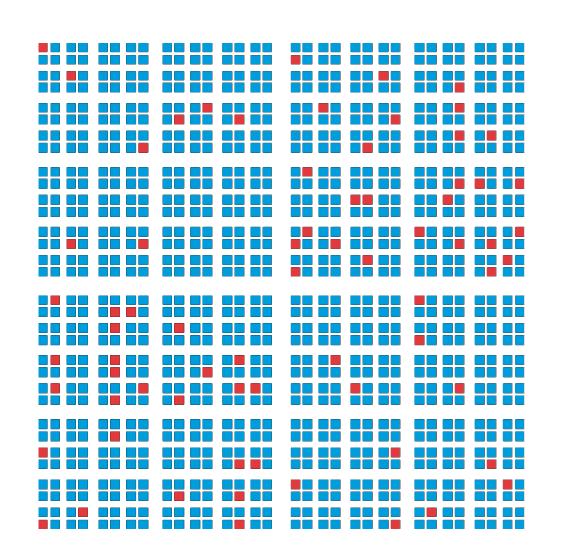
VISUAL LOTTERIES

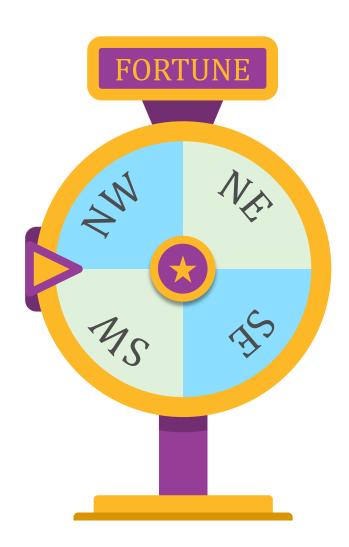
Michigan 2020 Covid-19 policy

Colorado 2023 Childcare

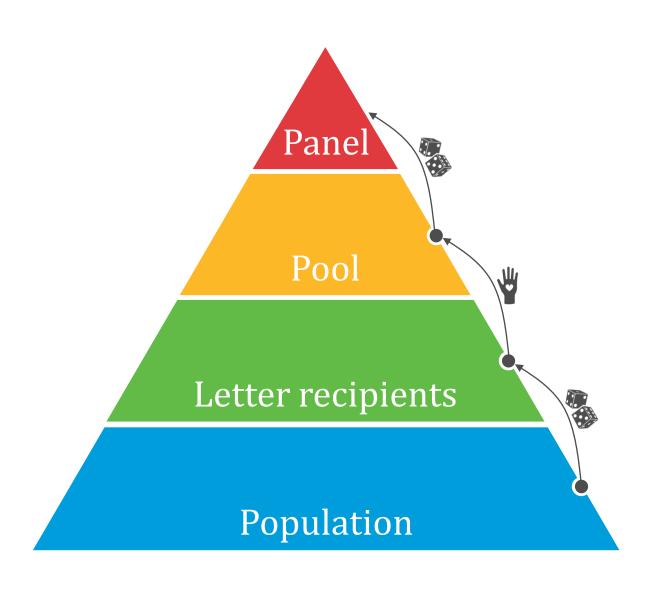
Germany 2023 Nutrition

VISUAL SELECTION

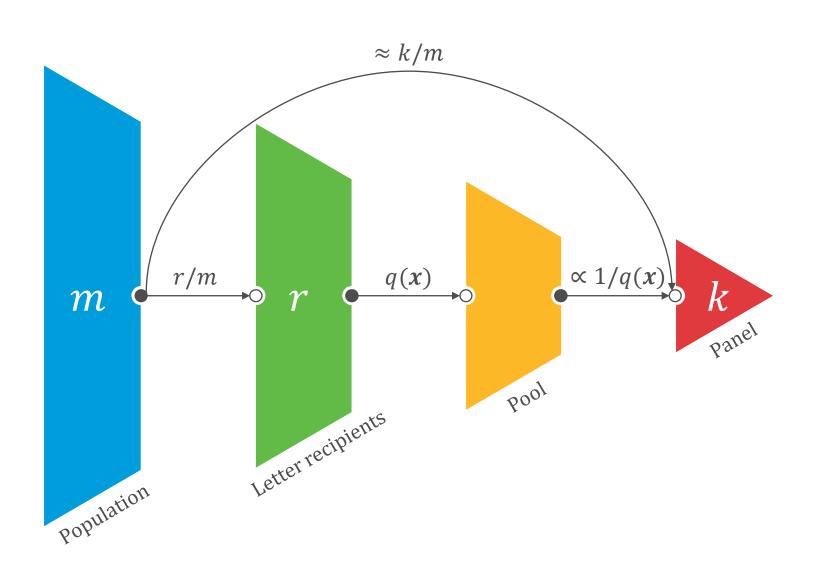




SORTITION PIPELINE, REVISITED



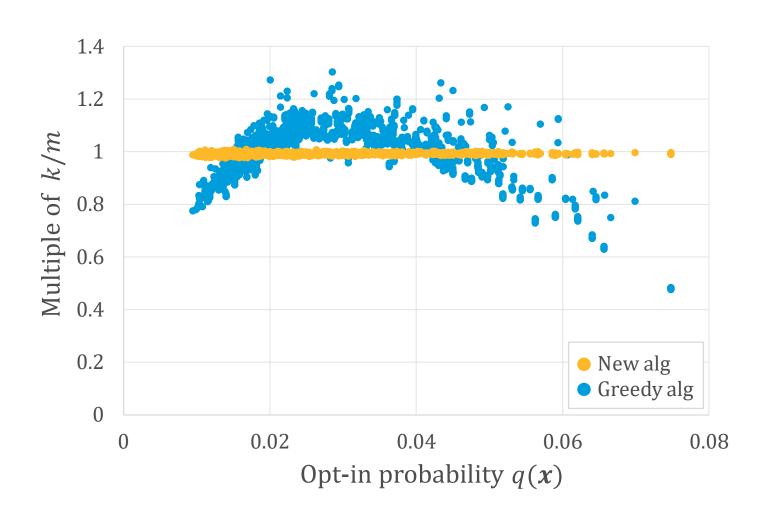
SORTITION PIPELINE, REVISITED



END-TO-END GUARANTEES

- Let M be the population, |M| = m, and let r be the number of letters sent
- Let $m_{f,v} = |\{x \in M : x_f = v\}|$
- Let $q: \prod_{f \in F} V_f \to [0,1]$ give the opt-in probability of each $x \in M$
- Let $\alpha = \min_{x \in M} q(x) \cdot r/k$
- Theorem: Suppose that $\alpha \to \infty$ and $m_{f,v} \ge m/k$ for all $f \in F, v \in V_f$, then there is an allocation rule such that:
 - $\Pr[\mathbf{x} \in P] \ge (1 o(1))k/m$ for all $\mathbf{x} \in M$
 - W.h.p., the quotas $\ell_{f,v}=(1-o(1))km_{f,v}/m-|F|$ and $u_{f,v}=(1+o(1))km_{f,v}/m+|F|$ are satisfied for all $f\in F$ and $v\in V_f$

EMPIRICAL PROBABILITIES



BIBLIOGRAPHY

Flanigan, Gölz, Gupta, Hennig, and Procaccia. Fair Selection of Citizens' Assemblies. Nature, 2021.

Flanigan, Gölz, Gupta, and Procaccia.

Neutralizing Self-Selection Bias in Sampling for Sortition. NeurIPS 2020.

Procaccia. A More Perfect Algorithm. Scientific American, 2022.