

Optimized

 Demacracy Spring 2023 | Lecture 15 Apportionment in the $19^{\text {th }}$ Century Ariel Procaccia | Harvard University
THE CONSTITUTION

"Representatives shall be aportioned among the several states...according to theirrespective humbers. The number of representatives shall notexceed one for every thirty thousand, but each state shall have at least- one representátive.",

THE MODEL

- Set of states $N=\{1, \ldots, n\}$
- K seats to be allocated
- Each state has population p_{i}, and the total population is $P=\sum_{i=1}^{n} p_{i}$
- The standard quota of state i is $q_{i}=\frac{p_{i}}{P} \cdot K$
- The upper quota of i is $\left\lceil q_{i}\right\rceil$, and the lower quota is $\left\lfloor q_{i}\right\rfloor$
- Let k_{i} be the number of seats allocated to i

ROUNDING STANDARD QUOTAS

- The problem is that the standard quotas are fractional
- Simply rounding the standard quotas to the nearest integers may give seat allocations that don't add up to K

State	p_{i}	q_{i}	k_{i}
1	506	50.6	51
2	307	30.7	31
3	187	18.7	19
Total	1,000	100	101

Alexander Hamilton

1755-1804

First secretary of the treasury, co-author of the Federalist Papers. Also known for his role in the eponymous musical.

HAMILTON'S METHOD

- Hamilton's Method allocates each state its lower quota and then allocates the remaining seats one at a time to the state with the largest residue $r_{i}=q_{i}-\left\lfloor q_{i}\right\rfloor$
- Congress presented a bill on March 26, 1792 that would apportion seats according to Hamilton's Method

HAMILTON'S METHOD

State	p_{i}	q_{i}	k_{i}
Connecticut	236,841	7.895	8
Delaware	55,540	1.851	2
Georgia	70,835	2.361	2
Kentucky	68,705	2.290	2
Maryland	278,514	9.284	9
Massachusetts	475,327	15.844	16
New Hampshire	141,822	4.727	5
New Jersey	179,570	5.986	6
New York	331,589	11.053	11
North Carolina	353,523	11.784	12
Pennsylvania	432,879	14.419	14
Rhode Island	68,446	2.282	2
South Carolina	206,236	6.875	7
Vermont	85,533	2.851	3
Virginia	630,560	21.019	21
Total	$3,615,920$	120	120

Based on the census of $1790 ; 120$ seats to be allocated.

Thomas Jefferson

1743-1826

Third president of the United States, first secretary of state. Also known for his supporting role in Hamilton.

JEFFERSON'S METHOD

- Jefferson's Method:
- Takes a desired number of seats K
- Finds a divisor D such that $\sum_{i=1}^{n}\left\lfloor p_{i} / D\right\rfloor=K$, where $\hat{q}_{i}=p_{i} / D$ is the modified quota
- Each state is allocated $k_{i}=\left\lfloor\hat{q}_{i}\right\rfloor$
- Washington was persuaded to veto the bill enacting Hamilton's Method
- Congress adopted Jefferson's Method on April 10, 1792
- It was used until 1830

JEFFERSON'S METHOD: EXAMPLE

- Jefferson's Method:
- Takes a desired number of seats K
- Finds a divisor D such that $\sum_{i=1}^{n}\left\lfloor p_{i} / D\right\rfloor=K$, where $\hat{q}_{i}=p_{i} / D$ is the modified quota
- Each state is allocated $k_{i}=\left\lfloor\widehat{q}_{i}\right\rfloor$
- Suppose there are three states with populations $p_{1}=150, p_{2}=320$, and $p_{3}=530$, and $K=10$

Poll

What is the allocation given by Jefferson's Method for the above instance?

- $(2,3,5)$
- $(1,4,5)$
- $(2,2,6)$
- $(1,3,6)$

JEFFERSON IS WELL-DEFINED

- Theorem: If D and D^{\prime} are two different divisors yielding Jefferson apportionments $k_{1}, \ldots k_{n}$ and $k_{1}^{\prime}, \ldots, k_{n}^{\prime}$ then $k_{i}=k_{i}^{\prime}$ for all $i \in N$
- Proof:
- Assume w.l.o.g. that $D \leq D^{\prime}$, then $p_{i} / D \geq p_{i} / D^{\prime}$ for all $i \in N$
- We conclude that $k_{i} \geq k_{i}^{\prime}$ for all $i \in N$
- It also holds that $\sum_{i \in N} k_{i}=K=\sum_{i \in N} k_{i}^{\prime}$
- It can't be the case that $k_{i}>k_{i}^{\prime}$ for some $i \in N ■$

JEFFERSON'S LARGE-STATE BIAS

		$D=100,000$		$D=97,000$	
State	p_{i}	\hat{q}_{i}	k_{i}	\hat{q}_{i}	k_{i}
1	$2,620,000$	26.20	26	27.01	27
2	168,000	1.68	1	1.73	1
\ldots	\ldots	\ldots	\ldots		
Total	$10,000,000$	\ldots	99	\ldots	100

- State 1 gets the additional seat despite initially having the smaller residue
- When the divisor is reduced, each seat requires 3,000 fewer citizens, and state 1 gains for each of its 26 seats
- State 1 needs 97,037 citizens per seat whereas state 2 needs 168,000

John Adams

1735-1826

Second president of the United States, first vice president. Also known for being mocked by King George III.

ADAMS' METHOD

- Adams' Method:
- Takes a desired number of seats K
- Finds a divisor D such that $\sum_{i=1}^{n}\left\lceil\hat{q}_{i}\right\rceil=K$
- Each state is allocated $k_{i}=\left\lceil\hat{q}_{i}\right\rceil$
- The large states were against the proposal
- Adams' Method was considered by Congress but never adopted

ADAMS' SMALL-STATE BIAS

		$D=100,000$		$D=104,000$	
State	p_{i}	\hat{q}_{i}	k_{i}	\hat{q}_{i}	k_{i}
1	$2,668,000$	26.68	27	25.65	26
2	120,000	1.20	2	1.15	2
\ldots	\ldots	\ldots	\ldots		
Total	$10,000,000$	\ldots	101	\ldots	100

- State 1 loses a seat despite initially having the larger residue
- When the divisor is increased, each seat requires 4,000 more citizens, and state 1 loses for each of its 27 seats
- State 1 needs 102,615 citizens per seat whereas state 2 needs 60,000

WEBSTER'S METHOD

- Webster's Method:
- Takes a desired number of seats K
- Finds a divisor D such that $\sum_{i=1}^{n}\left[\hat{q}_{i}\right]=K$
- Each state is allocated $k_{i}=\left[\hat{q}_{i}\right]$
- This method isn't biased towards small or large states
- Webster's Method was adopted by Congress in 1842

WEBSTER IS "UNBIASED"

State	p_{i}	\hat{q}_{i}	k_{i}	Ratio
1	304,000	30.4	30	10,133
2	26,000	2.6	3	8,667
Total	330,000	33	33	

\uparrow
Small state is better off
($D=10,000$ in both examples)
Large state is better off

State	p_{i}	\hat{q}_{i}	k_{i}	Ratio
1	296,000	29.6	30	9,867
2	34,000	3.4	3	11,333
Total	330,000	33	33	

HISTORICAL INTERLUDE

- In 1850, Senator Samuel Vinton (independently?) proposed a method that is identical to Hamilton's
- Vinton's (Hamilton's) Method was finally adopted by Congress that year
- The House increased from 233 seats to 234, a size on which the allocations from Hamilton's Method and Webster's Method coincided
- The size of the House increased to 241 in 1860 and to 292 in 1870

ALABAMA PARADOX

Under Hamilton's Method, adding seats can decrease a state's allocation!

		$K=10$		$K=11$	
State	p_{i}	q_{i}	k_{i}	q_{i}	k_{i}
1	6	4.286	4	4.714	5
2	6	4.286	4	4.714	5
3	2	1.429	2	1.571	1
Total	14	10	10	11	11

A method that avoids this paradox is called house monotonic

ALABAMA PARADOX

- The Alabama Paradox was discovered in 1880 by C. W. Seaton, the chief clerk of the Census Office
- Using the 1880 census results, he calculated allocations according to Hamilton's Method for all House sizes between 275 and 350
- When he went from 299 to 300, Alabama lost a seat!
- Congress decided to go with 325 seats, on which Hamilton's Method and Webster's Method agreed
- In 1890 there were no issues, but in 1900 the Alabama Paradox reappeared with Colorado and Maine taking the place of Alabama

POPULATION PARADOX

Under Hamilton's Method, a state whose population grew can lose a seat to a state whose population shrank

	Before			After		
State	p_{i}	q_{i}	k_{i}	p_{i}	q_{i}	k_{i}
1	145	1.45	2	147	1.55	1
2	340	3.40	3	338	3.56	4
3	515	5.15	5	465	4.89	5
Total	1000	10	10	950	10	10

A method that avoids this paradox is called population monotonic

POPULATION PARADOX

- In 1900, the populations of Virginia and Maine were $1,854,184$ and 694,466 , respectively
- In the following year Virginia's population grew by 19,767 ($+1.06 \%$) while Maine's increased by 4,649 (+0.7\%)
- Hamilton's Method would have allocated an additional seat to Maine at the expense of Virginia

OKLAHOMA PARADOX

Under Hamilton's Method, adding a state and increasing the size of the house accordingly can change the allocation of existing states

	Before			After		
State	p_{i}	q_{i}	k_{i}	p_{i}	q_{i}	k_{i}
1	145	1.45	2	145	1.50	1
2	340	3.40	3	340	3.51	4
3	515	5.15	5	515	5.31	5
4	-	-	-	260	2.68	3
Total	1000	10	10	1260	13	13

OKLAHOMA PARADOX

- When Oklahoma became a state in 1907 , it was awarded 5 representatives and the size of the House increased by 5
- But if the allocation was recomputed according to Hamilton's method (which was used at the time) and the same 1900 census data, New York would have had to transfer a seat to Maine

BIBLIOGRAPHY

G. G. Szpiro. Numbers Rule. Princeton University Press, 2010.
G. E. A. Robinson and D. H. Ullman. A Mathematical Look at Politics. CRC Press, 2010.

