

## Optimized

 Demacracy Spring 2023 | Lecture 14 SortitionAriel Procaccia | Harvard University

## HERE'S A RANDOM IDEA



Sortition-democracy built on lotteries instead of elections

## A BRIEF HISTORY OF SORTITION



## RANDOM ASSEMBLY REQUIRED



Ireland
2016
Constitution


France
2019-2020
Climate


Belgium
Since 2019
Permanent
https://www.youtube.com/watch?v=EDGp5eGnnxI

## IDEAL SORTITION PIPELINE



## ACTUAL SORTITION PIPELINE



## ACTUAL SORTITION PIPELINE



## FEATURES



Climate Assembly UK (2020)
Pool size is $n=1727$, panel size is $k=110$

## QUOTAS



■ 16-29 - 30-44 ■ 45-59 ■ 60+


## THE SORTITION MODEL

- Set of features $F$, where each $f \in F$ has a set of values $V_{f}$
- Multiset of $n$ volunteers $N$ where each $\boldsymbol{x} \in N$ is a vector of feature values
- For each $f \in F$ and $v \in V_{f}$ there is an upper quota $u_{f, v}$ and a lower quota $\ell_{f, v}$
- The goal is to choose a panel $P$ of $k$ volunteers such that for all $f \in F, v \in V_{f}$, $\ell_{f, v} \leq\left|\left\{x \in P: x_{f}=v\right\}\right| \leq u_{f, v}$
- Finding a quota-feasible panel is NP-hard


## A GREEDY ALGORITHM

- At time $t$, a partial panel $P_{t}$ has been selected ( $P_{0}=\varnothing$ )
- For each $f \in F, v \in V_{f}$ define the score of $v$ to be

$$
\frac{\ell_{f, v}-\left|\left\{x \in P_{t}: x_{f}=v\right\}\right|}{\left|\left\{x \in N \backslash P_{t}: x_{f}=v\right\}\right|}
$$

- For $v$ with maximum score, select uniformly at random among $x \in N \backslash P_{t}$ such that $x_{f}=v$
- When all lower quotas have been filled, select uniformly at random among $N \backslash P_{t}$
- If any quotas cannot be satisfied, restart


## A GREEDY ALGORITHM



## A GREEDY ALGORITHM



Mystery Challenger


## LOADING THE DICE



## FROM SORTITION TO FAIR DIVISION



A distribution over panels of size $k$ divides overall selection probability of $k$ between pool members

## ALLOCATION RULES

- An allocation rule outputs a distribution $\mathcal{D}$ over quota-feasible panels of size $k$
- Maximum Nash Welfare maximizes the product $\prod_{x \in N} \operatorname{Pr}_{P \sim \mathcal{D}}[x \in P]$
- Leximin maximizes $\min _{x \in N} \operatorname{Pr}_{P \sim \mathcal{D}}[x \in P]$, subject to that max the second lowest probability, etc.


## Poll

Which of the two rules equalizes volunteers' selection probabilities whenever the quotas make it feasible to do so?

- MNW • Leximin • Both rules • Neither one



## MYSTERY CHALLENGER UNMASKED

Leximin


Nash Welfare


## EVERYONE DESERVES A FAIR CHANCE




Online at panelot.org

## DEPLOYMENT

## ■ USA

OF/BY/FOR ALL


■ Canada ■ UK
MASSLBP SORTITON

- France
respublica

CASCADIA


## VISUAL SELECTION

##  H月 \＃\＃\＃\＃\＃\＃      \＃\＃\＃\＃\＃\＃\＃



 H月明明




朋相

 뷰유요

明相


明朋 뷰요요





## SORTITION PIPELINE, REVISITED



## SORTITION PIPELINE, REVISITED



## END-TO-END GUARANTEES

- Let $M$ be the population, $|M|=m$, and let $r$ be the number of letters sent
- Let $m_{f, v}=\left|\left\{x \in M: x_{f}=v\right\}\right|$
- Let $q: \prod_{f \in F} V_{f} \rightarrow[0,1]$ give the opt-in probability of each $\boldsymbol{x} \in M$
- Let $\alpha=\min _{x \in M} q(x) \cdot r / k$
- Theorem: Suppose that $\alpha \rightarrow \infty$ and $m_{f, v} \geq m / k$ for all $f \in F, v \in V_{f}$, then there is an allocation rule such that:
- $\operatorname{Pr}[x \in P] \geq(1-o(1)) k / m$ for all $x \in M$
- W.h.p., the quotas $\ell_{f, v}=(1-o(1)) k m_{f, v} / m-|F|$ and $u_{f, v}=(1+o(1)) k m_{f, v} / m+|F|$ are satisfied for all $f \in F$ and $v \in V_{f}$


## EMPIRICAL PROBABILITIES



## BIBLIOGRAPHY

Flanigan, Gölz, Gupta, Hennig, and Procaccia. Fair Selection of Citizens' Assemblies. Nature, 2021.

Flanigan, Gölz, Gupta, and Procaccia. Neutralizing Self-Selection Bias in Sampling for Sortition. NeurIPS 2020.

Procaccia. A More Perfect Algorithm. Scientific American, 2022.

