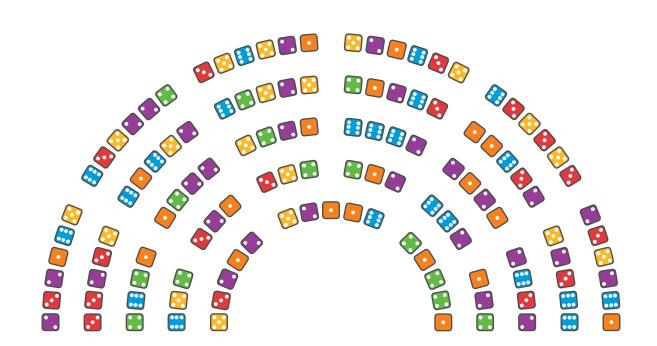


Optimized Democracy

Spring 2023 | Lecture 14 Sortition

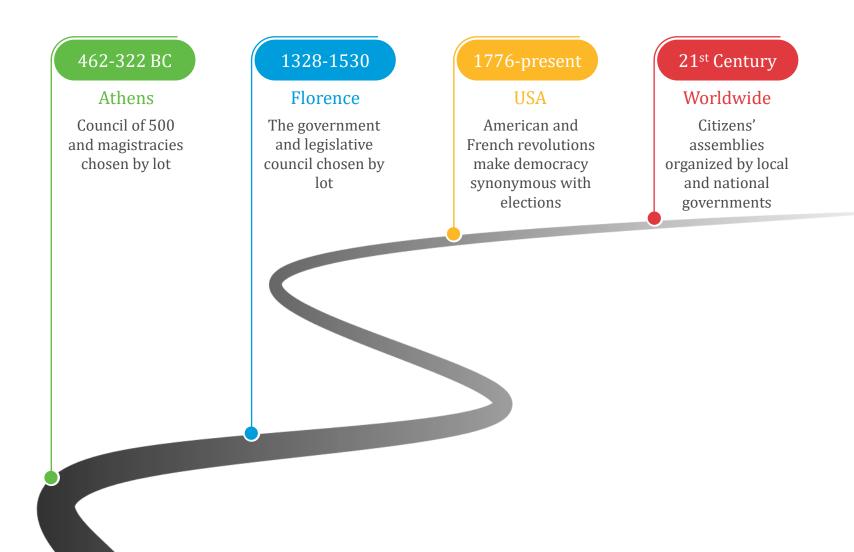
Ariel Procaccia | Harvard University

HERE'S A RANDOM IDEA



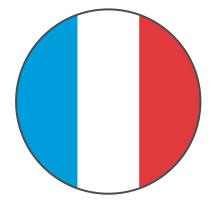
Sortition—democracy built on lotteries instead of elections

A BRIEF HISTORY OF SORTITION



RANDOM ASSEMBLY REQUIRED

Ireland 2016 Constitution

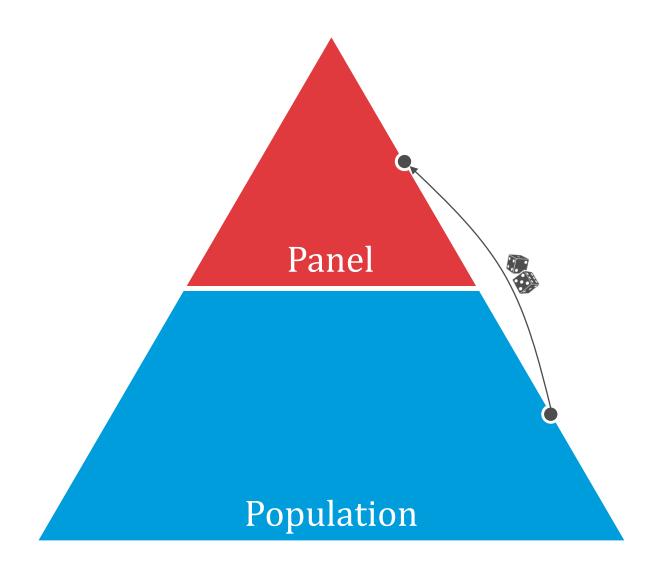


France 2019-2020 Climate

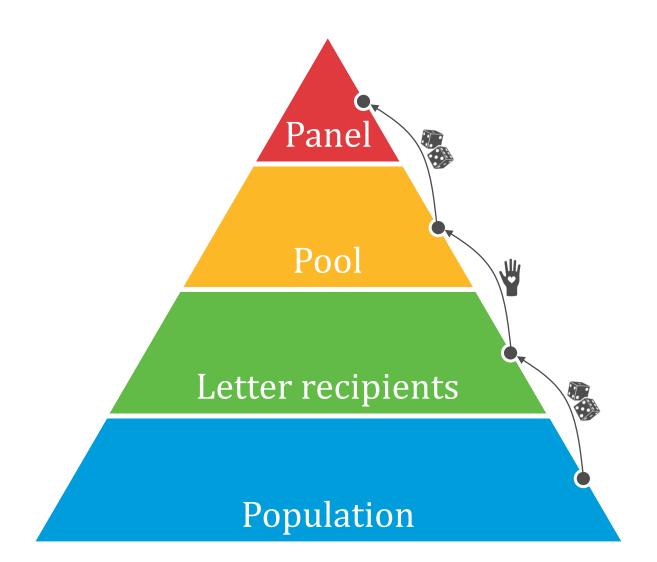
Belgium Since 2019 Permanent

https://www.youtube.com/watch?v=EDGp5eGnnxI

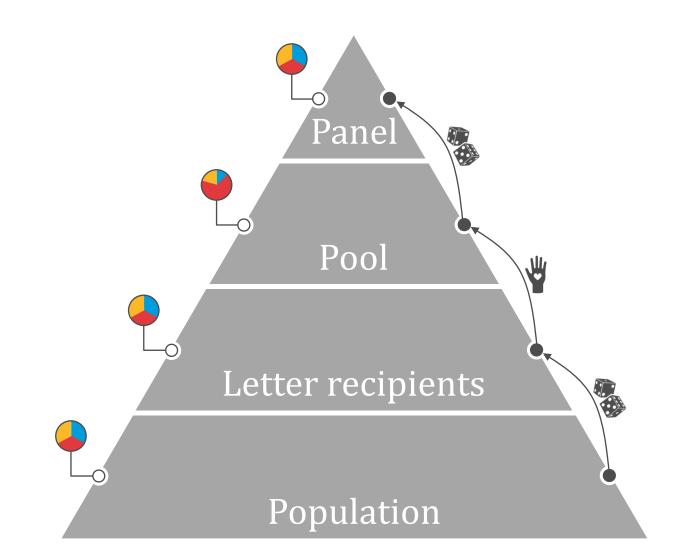
IDEAL SORTITION PIPELINE



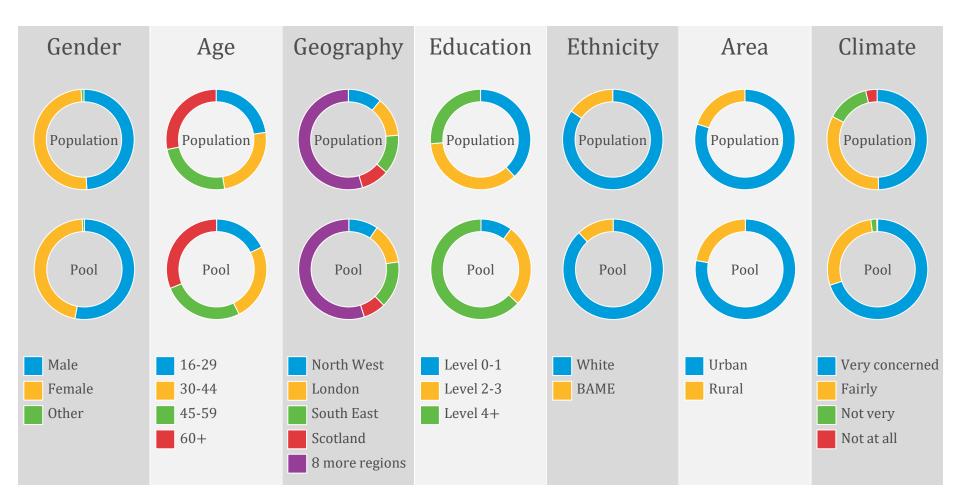
ACTUAL SORTITION PIPELINE



ACTUAL SORTITION PIPELINE

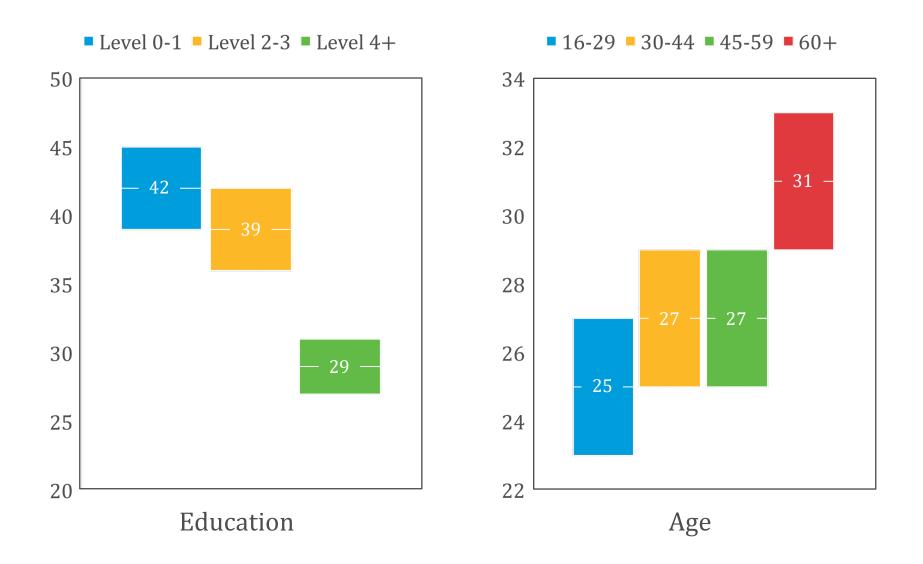


FEATURES



Climate Assembly UK (2020) Pool size is n = 1727, panel size is k = 110

QUOTAS



THE SORTITION MODEL

- Set of features F, where each $f \in F$ has a set of values V_f
- Multiset of *n* volunteers *N* where each $x \in N$ is a vector of feature values
- For each $f \in F$ and $v \in V_f$ there is an upper quota $u_{f,v}$ and a lower quota $\ell_{f,v}$
- The goal is to choose a panel *P* of *k* volunteers such that for all $f \in F, v \in V_f$, $\ell_{f,v} \leq |\{x \in P : x_f = v\}| \leq u_{f,v}$
- Finding a quota-feasible panel is NP-hard

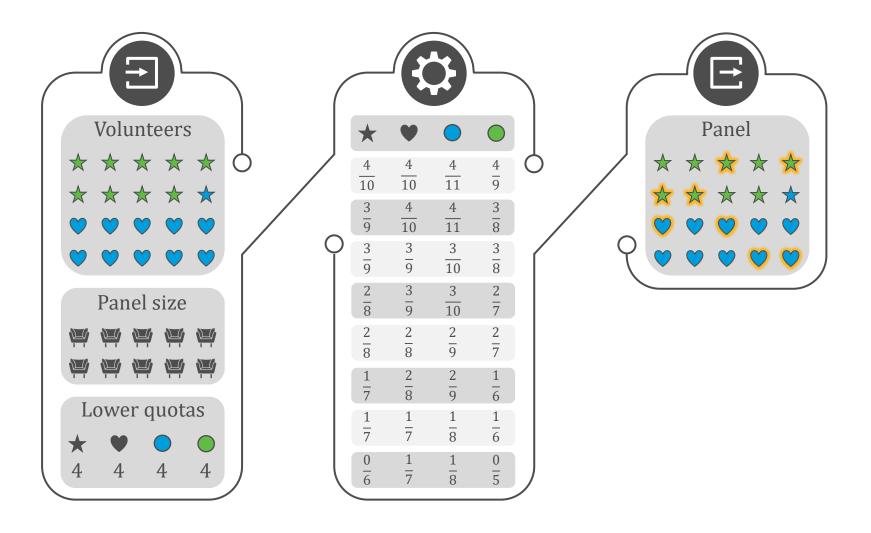
A GREEDY ALGORITHM

- At time *t*, a partial panel P_t has been selected $(P_0 = \emptyset)$
- For each $f \in F$, $v \in V_f$ define the score of v to be

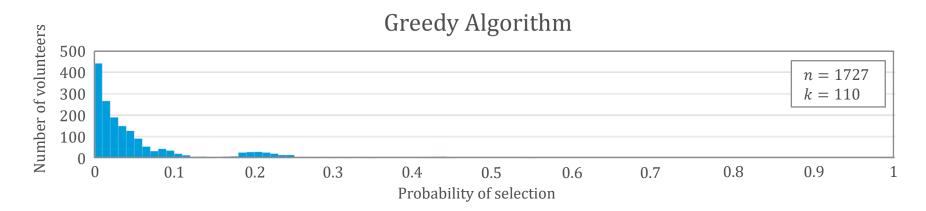
$$\frac{\ell_{f,v} - \left| \left\{ \boldsymbol{x} \in P_t \colon x_f = v \right\} \right|}{\left| \left\{ \boldsymbol{x} \in N \setminus P_t \colon x_f = v \right\} \right|}$$

- For v with maximum score, select uniformly at random among $x \in N \setminus P_t$ such that $x_f = v$
- When all lower quotas have been filled, select uniformly at random among $N \setminus P_t$
- If any quotas cannot be satisfied, restart

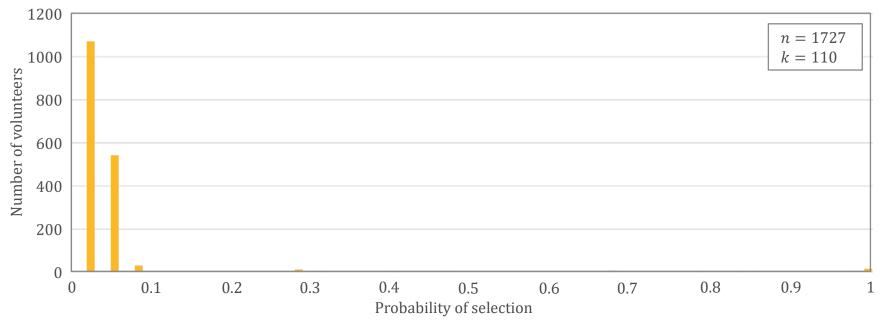
A GREEDY ALGORITHM



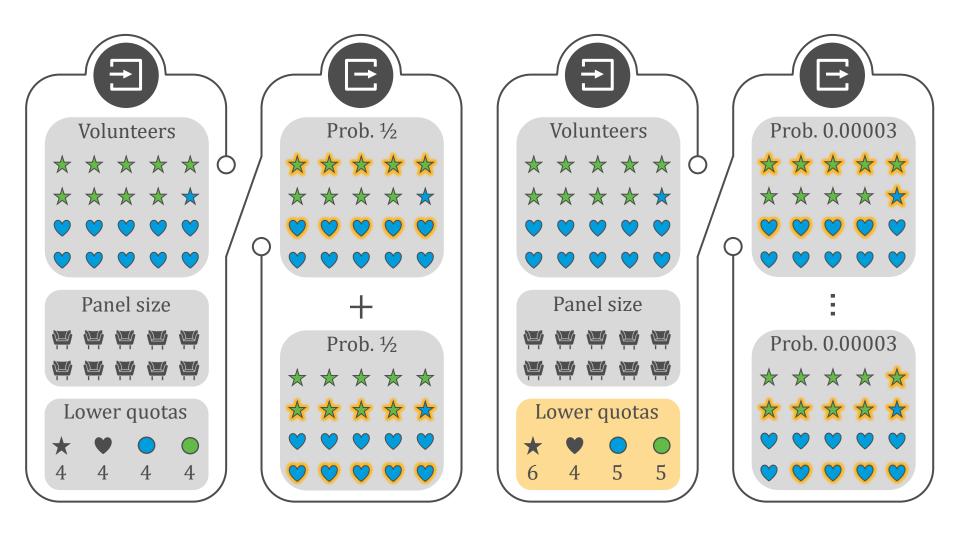
A GREEDY ALGORITHM



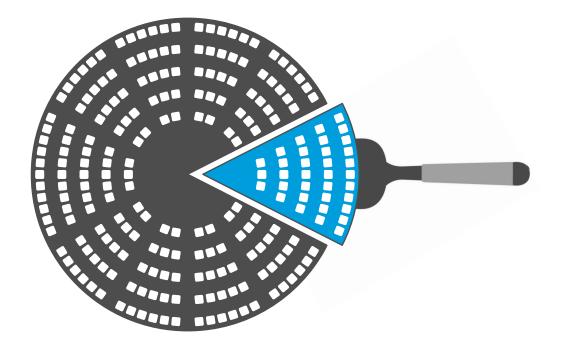
Mystery Challenger



LOADING THE DICE



FROM SORTITION TO FAIR DIVISION



A distribution over panels of size *k* divides overall selection probability of *k* between pool members

ALLOCATION RULES

- An allocation rule outputs a distribution \mathcal{D} over quota-feasible panels of size k
- Maximum Nash Welfare maximizes the product $\prod_{x \in N} \Pr_{P \sim D} [x \in P]$
- Leximin maximizes $\min_{x \in N} \Pr_{P \sim D} [x \in P]$, subject to that max the second lowest probability, etc.

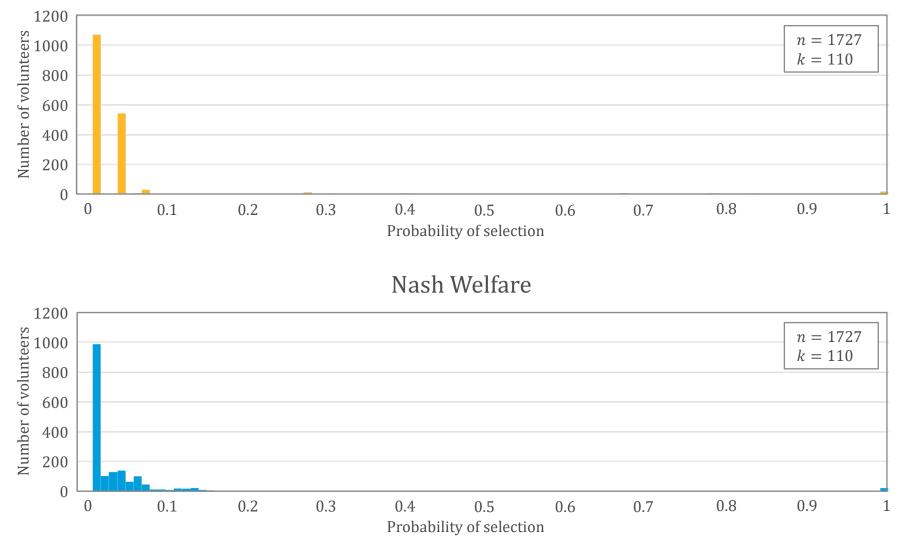
Poll

Which of the two rules equalizes volunteers' selection probabilities whenever the quotas make it feasible to do so?

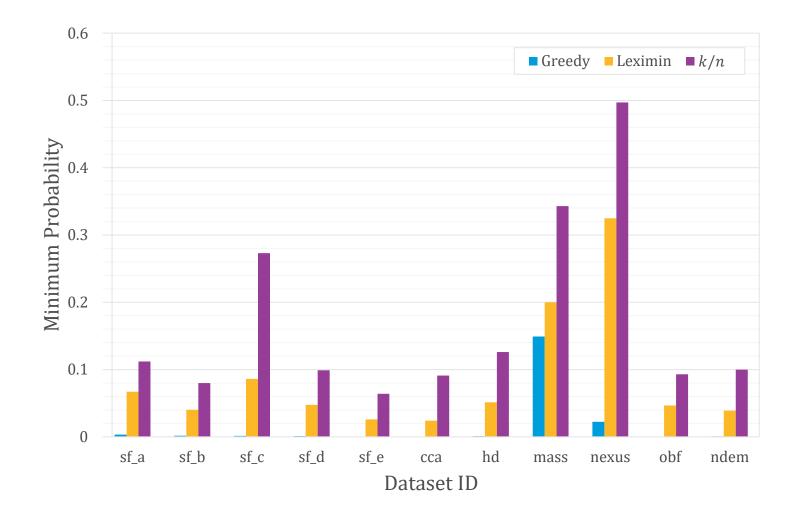
• MNW • Leximin • Both rules • Neither one

MYSTERY CHALLENGER UNMASKED

Leximin

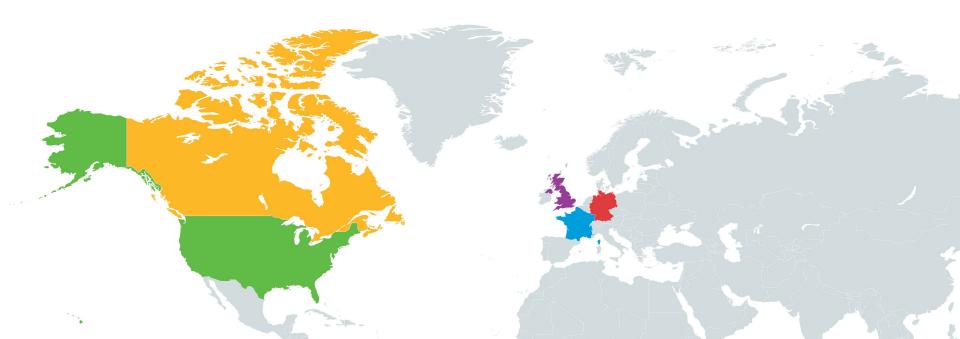


EVERYONE DESERVES A FAIR CHANCE



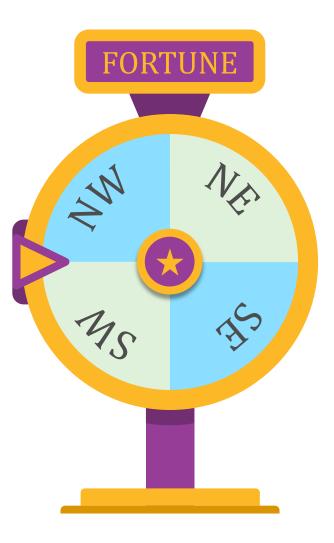
Online at panelot.org

DEPLOYMENT

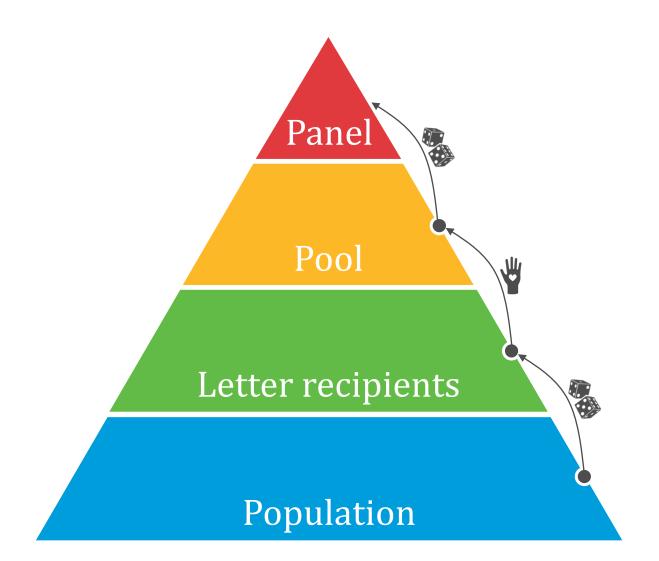


VISUAL SELECTION

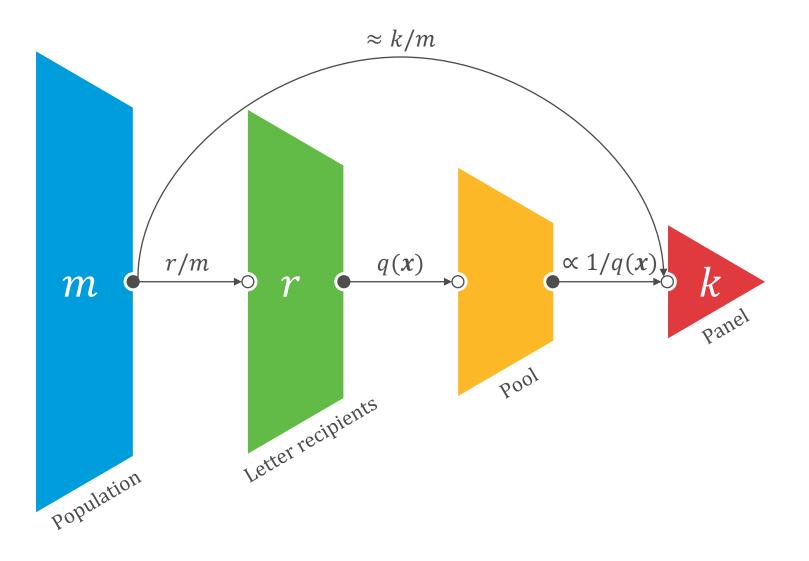




SORTITION PIPELINE, REVISITED



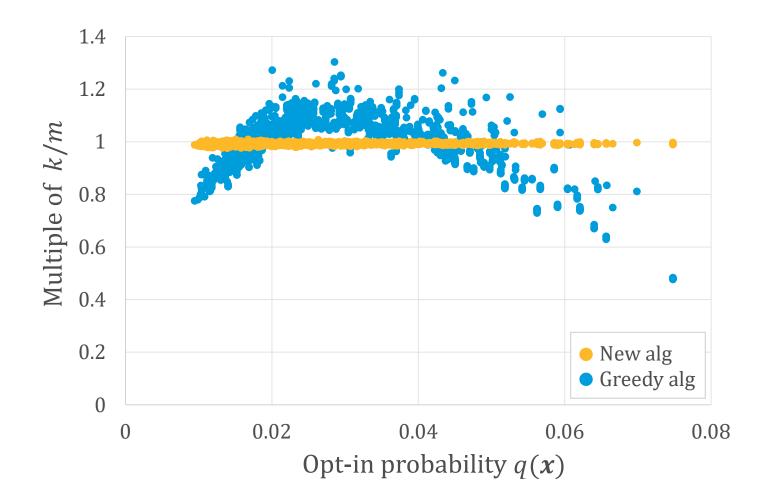
SORTITION PIPELINE, REVISITED



END-TO-END GUARANTEES

- Let *M* be the population, |M| = m, and let *r* be the number of letters sent
- Let $m_{f,v} = |\{x \in M : x_f = v\}|$
- Let $q: \prod_{f \in F} V_f \to [0,1]$ give the opt-in probability of each $x \in M$
- Let $\alpha = \min_{x \in M} q(x) \cdot r/k$
- Theorem: Suppose that $\alpha \to \infty$ and $m_{f,v} \ge m/k$ for all $f \in F, v \in V_f$, then there is an allocation rule such that:
 - $\Pr[\mathbf{x} \in P] \ge (1 o(1))k/m$ for all $\mathbf{x} \in M$
 - W.h.p., the quotas $\ell_{f,v} = (1 o(1))km_{f,v}/m |F|$ and $u_{f,v} = (1 + o(1))km_{f,v}/m + |F|$ are satisfied for all $f \in F$ and $v \in V_f$

EMPIRICAL PROBABILITIES



BIBLIOGRAPHY

Flanigan, Gölz, Gupta, Hennig, and Procaccia. Fair Selection of Citizens' Assemblies. Nature, 2021.

Flanigan, Gölz, Gupta, and Procaccia. Neutralizing Self-Selection Bias in Sampling for Sortition. NeurIPS 2020.

Procaccia. A More Perfect Algorithm. Scientific American, 2022.