

Optimized Democracy

Spring 2023 | Lecture 13 Random Assignment Ariel Procaccia | Harvard University

ASSIGNMENT PROBLEMS

School choice

Assign students to schools

Housing allocation

Assign applicants to public housing

Common thread: Each player requires exactly one good

THE MODEL

- Set of players $N = \{1, ..., n\}$
- Set G of n goods (we're assuming |N| = |G| for convenience)
- Each player has a ranking $\sigma_i \in \mathcal{L}$ over G
- An assignment is a perfect matching π between players and goods, where π(i) is the good assigned to i
- We are interested in rules f that take $\pmb{\sigma} \in \mathcal{L}^n$ and output π

SERIAL DICTATORSHIP

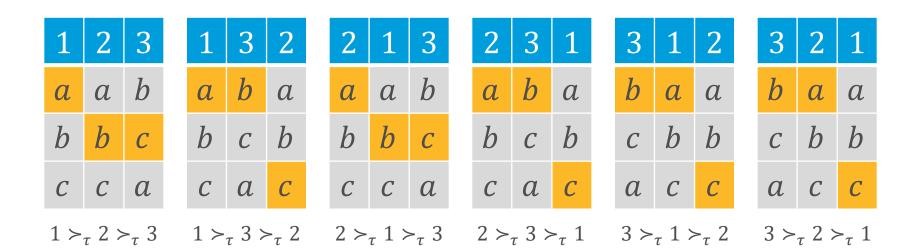
- Players select their favorite goods according to a predetermined order τ
- Example for the order $1 \succ_{\tau} 2 \succ_{\tau} 3 \succ_{\tau} 4$:

1	2	3	4
а	а	d	а
b	b	С	d
С	С	b	С
d	d	а	b

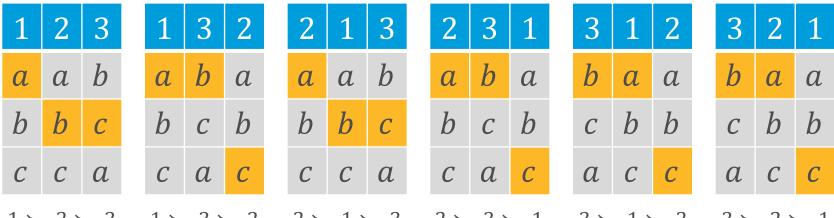
SERIAL DICTATORSHIP: PROPERTIES

- An assignment π is Pareto efficient if there is no assignment π' such that $\pi'(i) \ge_{\sigma_i} \pi(i)$ for all $i \in N$ and $\pi'(j) \ge_{\sigma_j} \pi(j)$ for some $j \in N$
- A rule f is strategyproof (SP) if for all $\sigma \in \mathcal{L}^n$, for all $i \in N$ and for all $\sigma'_i \in \mathcal{L}$, $f(\sigma)(i) \geq_{\sigma_i} f(\sigma'_i, \sigma_{-i})(i)$

Poll 1


Which of the following properties is satisfied by serial dictatorship?

- Pareto efficiency Both
- Strategyproofness Neither


RANDOM SERIAL DICTATORSHIP

(Serial dictatorship with the order τ chosen uniformly at random.)

A distribution over assignments is called a **lottery**

LOTTERY TO RANDOM ASSIGNMENT

 $1 \succ_{\tau} 2 \succ_{\tau} 3 \qquad 1 \succ_{\tau} 3 \succ_{\tau} 2 \qquad 2 \succ_{\tau} 1 \succ_{\tau} 3 \qquad 2 \succ_{\tau} 3 \succ_{\tau} 1 \qquad 3 \succ_{\tau} 1 \succ_{\tau} 2 \qquad 3 \succ_{\tau} 2 \succ_{\tau} 1$

A random assignment is a bistochastic matrix $P = [p_{ix}]$ where p_{ix} is the probability player *i* is assigned to *x*

	а	b	С	
1	1/2	1/6	1/3	
2	1/2	1/6	1/3	
3	0	2/3	1/3	

RSD: PROPERTIES

- RSD is ex post strategyproof: Players cannot gain from lying regardless of the random coin flips
- In contrast to SD, RSD satisfies equal treatment of equals: For $i, j \in N$ such that $\sigma_i = \sigma_j$ it holds that $p_{ix} = p_{jx}$ for all $x \in G$
- RSD is ex post Pareto efficient: every assignment in its support is Pareto efficient
- Is this a satisfying notion of efficiency for lotteries?

ORDINAL EFFICIENCY

- Random assignment P' stochastically dominates Piff for all $i \in N$ and $x \in G$, $\sum_{y \geq \sigma_i x} p'_{iy} \geq \sum_{y \geq \sigma_i x} p_{iy}$, with at least one strict inequality
- A random assignment is **ordinally efficient** if it isn't stochastically dominated by any other assignment

Poll 2

What is the relation between ex post efficiency and ordinal efficiency?

- Ex post \Rightarrow ordinal
- Ex post \Leftrightarrow ordinal
- Ordinal \Rightarrow ex post Incomparable

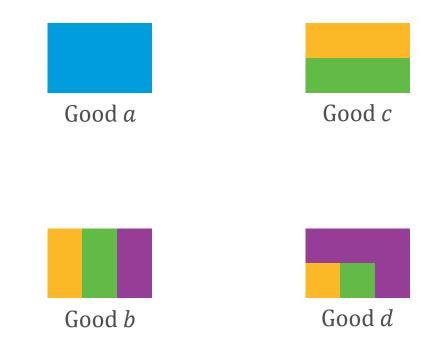
RSD IS NOT ORDINALLY EFFICIENT

1	2	3	4
а	а	b	b
b	b	а	а
С	С	С	С
d	d	d	d

	а	b	С	d
1	5/12	1/12	1/4	1/4
2	5/12	1/12	1/4	1/4
3	1/12	5/12	1/4	1/4
4	1/12	5/12	1/4	1/4

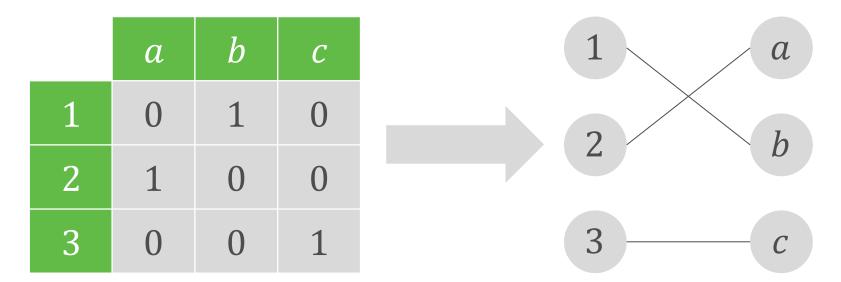
Random serial dictatorship

	а	b	С	d
1	1/2	0	1/4	1/4
2	1/2	0	1/4	1/4
3	0	1/2	1/4	1/4
4	0	1/2	1/4	1/4


Stochastically dominating assignment

PROBABILISTIC SERIAL RULE

- The probabilistic serial rule is directly defined by a random assignment (more on this later)
- Each good is a "divisible" good consisting of "probability shares"
- At every point in time, all players "eat" their favorite remaining goods at the same rate
- When all goods are eaten, each player has probability shares adding up to 1


PROBABILISTIC SERIAL RULE

1	2	3	4
а	b	b	b
b	С	С	d
С	d	d	С
d	а	а	а

RANDOM ASSIGNMENT TO LOTTERY

- We saw that every lottery induces a random assignment, is the converse also true?
- A permutation matrix is a bistochastic matrix consisting only of zeros and ones
- A permutation matrix represents an assignment

RANDOM ASSIGNMENT TO LOTTERY

	а	b	С
1	1/2	1/6	1/3
2	1/2	1/2	0
3	0	1/3	2/3

Theorem [Birkhoff-von Neumann]: Any bistochastic matrix can be obtained as a convex combination of permutation matrices

	а	b	С			а	b	С
1	0	1	0		1	1	0	0
2	1	0	0		2	0	1	0
3	0	0	1		3	0	0	1
	$\times 1$	× 1/6				$\times 1$	1/2	

	а	b	С		
1	0	0	1		
2	1	0	0		
3	0	1	0		
× 1/3					

PS: PROPERTIES

- Probabilistic serial obviously satisfies equal treatment of equals
- Theorem: Probabilistic serial is ordinally efficient
- Given a random assignment *P* and a profile σ , define a graph $\Gamma_{P,\sigma} = (G, E)$ where $(x, y) \in E$ iff $\exists i \in N$ such that $x \succ_{\sigma_i} y$ and $p_{iy} > 0$
- Lemma: If $\Gamma_{P,\sigma}$ is acyclic then *P* is ordinally efficient

PROOF OF THEOREM

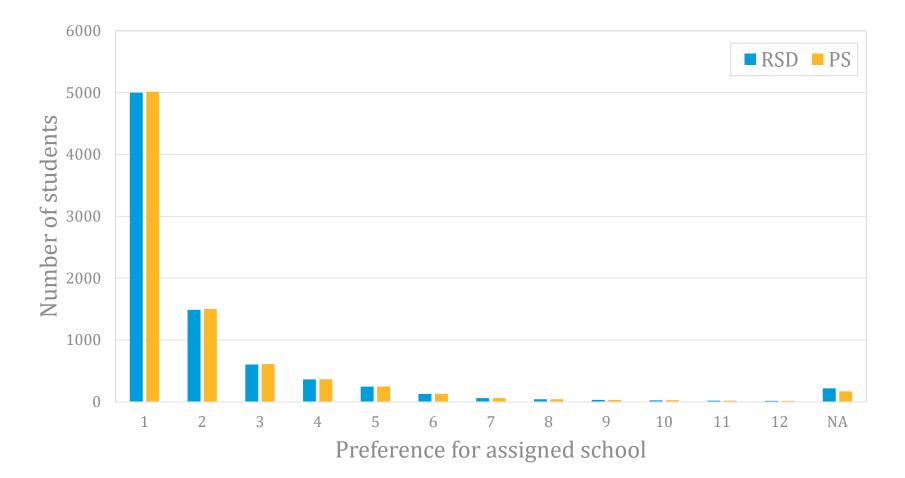
- If *P* is the output of PS, we claim that $\Gamma_{P,\sigma}$ is acyclic, and conclude by the lemma
- Suppose for contradiction that $\Gamma_{P,\sigma}$ has a cycle
- Let *x* be the first good in the cycle to be fully eaten at time *t*
- There is an edge (y, x) in $\Gamma_{P,\sigma}$ so there is $i \in N$ such that $y \succ_{\sigma_i} x$ and $p_{ix} > 0$
- But at any point up to *t*, player *i* should have been eating *y* or a more preferred good, which contradicts the fact that $p_{ix} > 0$

PS IS NOT STRATEGYPROOF

1	2	3	4
а	а	b	b
b	С	С	С
С	d	d	d
d	b	а	а

	а	b	С	d
1	1/2	0	1/4	1/4
2	1/2	0	1/4	1/4
3	0	1/2	1/4	1/4
4	0	1/2	1/4	1/4

1	2	3	4
b	а	b	b
а	С	С	С
С	d	d	d
d	b	а	а


	а	b	С	d
1	1/3	1/3	1/12	1/4
2	2/3	0	1/12	1/4
3	0	1/3	5/12	1/4
4	0	1/3	5/12	1/4

AN IMPOSSIBILITY RESULT

- Theorem: There is no rule that satisfies ordinal efficiency, strategyproofness and equal treatment of equals
- If we accept equal treatment of equals as non-negotiable then the tradeoff between ordinal efficiency and strategyproofness is unavoidable

PS VS. RSD ON NYC DATA

Pathak [2006] ran RSD and PS on ("truthful") data from 8255 students in NYC

PS VS. RSD IN THEORY

 A result by Che and Kojima [2010] formalizes this "equivalence in the large" between RSD and PS: the two random assignments converge to the same limit as the instance grows larger

Poll 3

In light of these results, which rule would you use for school choice?

- Random serial dictatorship
- Probabilistic serial

BIBLIOGRAPHY

A. Bogomolnaia and H. Moulin. A New Solution to the Random Assignment Problem. Journal of Economic Theory, 2001.

Y.-K. Che and F. Kujima. Asymptotic Equivalence of Probabilistic Serial and Random Priority Mechanisms. Econometrica, 2010.