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INDIVISIBLE GOODS

• Set 𝐺𝐺 of 𝑚𝑚 goods
• Each good is indivisible
• Players 𝑁𝑁 = 1, … ,𝑛𝑛 have valuations 𝑉𝑉𝑖𝑖 for 

bundles of goods
• Valuations are additive if for all 𝑆𝑆 ⊆ 𝐺𝐺 and      
𝑖𝑖 ∈ 𝑁𝑁, 𝑉𝑉𝑖𝑖 𝑆𝑆 = ∑𝑔𝑔∈𝑆𝑆 𝑉𝑉𝑖𝑖 𝑔𝑔

• Assume additivity unless noted otherwise
• An allocation is a partition of the goods, 

denoted 𝑨𝑨 = (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛)
• Envy-freeness and proportionality are 

infeasible!



MAXIMIN SHARE GUARANTEE

$50 $30 $3 $2 $5 $5 $5

Total: 
$50

Total: 
$30

Total: 
$20



MAXIMIN SHARE GUARANTEE

$50 $30 $3 $2 $5 $5 $5

Total: 
$50

Total: 
$30

Total: 
$20

$3 $2 $5 $40 $10 $20 $20

Total: 
$40

Total: 
$30

Total: 
$30



• Maximin share (MMS) guarantee of player 𝑖𝑖:
max
𝑋𝑋1,…,𝑋𝑋𝑛𝑛

min
𝑗𝑗
𝑉𝑉𝑖𝑖(𝑋𝑋𝑗𝑗)

• An MMS allocation is such that 𝑉𝑉𝑖𝑖(𝐴𝐴𝑖𝑖) is at 
least 𝑖𝑖’s MMS guarantee for all 𝑖𝑖 ∈ 𝑁𝑁

• For 𝑛𝑛 = 2 an MMS allocation always exists
• Theorem: ∀𝑛𝑛 ≥ 3 there exist additive 

valuation functions that do not admit an 
MMS allocation

MAXIMIN SHARE GUARANTEE
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COUNTEREXAMPLE FOR 𝑛𝑛 = 3

282828
252525

3 ways of dividing these numbers into 3 subsets 
of 4 numbers such that each subset adds up to 55



COUNTEREXAMPLE FOR 𝑛𝑛 = 3

1 1 1 1
1 1 1 1
1 1 1 1

17 25 12 1
2 22 3 28

11 0 21 23
× 106 × 103

3 -1 -1 -1
0 0 0 0
0 0 0 0

3 -1 0 0
-1 0 0 0
-1 0 0 0

3 0 -1 0
0 0 -1 0
0 0 0 -1

Player 1 Player 2 Player 3

+ +



APPROXIMATE ENVY-FREENESS

• Assume general monotonic valuations, i.e., 
for all 𝑆𝑆 ⊆ 𝑇𝑇 ⊆ 𝐺𝐺,𝑉𝑉𝑖𝑖 𝑆𝑆 ≤ 𝑉𝑉𝑖𝑖(𝑇𝑇)

• An allocation 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 is envy free up to one 
good (EF1) if and only if 
∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,∃𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 s.t. 𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗\{𝑔𝑔}

• Theorem: An EF1 allocation exists and can 
be found in polynomial time



PROOF OF THEOREM

• A partial allocation is an allocation of a 
subset of the goods

• Given a partial allocation 𝑨𝑨, we have an 
edge (𝑖𝑖, 𝑗𝑗) in its envy graph if 𝑖𝑖 envies 𝑗𝑗

• Lemma: An EF1 partial allocation 𝑨𝑨 can 
be transformed in polynomial time into 
an EF1 partial allocation 𝑩𝑩 of the same 
goods with an acyclic envy graph



PROOF OF LEMMA
• If graph has a cycle 𝐶𝐶, shift 

allocations along 𝐶𝐶 to obtain 
𝑨𝑨′; clearly EF1 is maintained

• #edges in envy graph of 𝑨𝑨′
decreased: 
◦ Same edges between 𝑁𝑁 ∖ 𝐶𝐶
◦ Edges from 𝑁𝑁 ∖ 𝐶𝐶 to 𝐶𝐶 shifted
◦ Edges from 𝐶𝐶 to 𝑁𝑁 ∖ 𝐶𝐶 can 

only decrease
◦ Edges inside C decreased

• Iteratively remove cycles ∎

𝑆𝑆1

𝑆𝑆2𝑆𝑆3

𝑆𝑆4

𝑆𝑆2

𝑆𝑆3𝑆𝑆1

𝑆𝑆4



PROOF OF THEOREM

• Maintain EF1 and acyclic envy graph
• In round 1, allocate good 𝑔𝑔1 to arbitrary 

player; envy graph is acyclic and EF1
• 𝑔𝑔1, … ,𝑔𝑔𝑘𝑘−1 are allocated in acyclic and 

EF1 allocation 𝑨𝑨
• Derive 𝑩𝑩 by allocating 𝑔𝑔𝑘𝑘 to source 𝑖𝑖
• 𝑉𝑉𝑗𝑗 𝐵𝐵𝑗𝑗 = 𝑉𝑉𝑗𝑗 𝐴𝐴𝑗𝑗 ≥ 𝑉𝑉𝑗𝑗 𝐴𝐴𝑖𝑖 = 𝑉𝑉𝑗𝑗 𝐵𝐵𝑖𝑖 ∖ 𝑔𝑔𝑘𝑘
• Use lemma to eliminate cycles ∎



ROUND ROBIN

• Let us return to additive valuations
• Now proving the existence of an EF1 

allocation is trivial
• A round-robin allocation is EF1:

Phase 1 Phase 2



EFFICIENCY AND FAIRNESS

• An allocation 𝑨𝑨 is Pareto efficient if 
there is no allocation 𝑨𝑨′ such that 
𝑉𝑉𝑖𝑖 𝐴𝐴𝑖𝑖′ ≥ 𝑉𝑉𝑖𝑖 𝐴𝐴𝑖𝑖 for all 𝑖𝑖 ∈ 𝑁𝑁, and 
𝑉𝑉𝑗𝑗 𝐴𝐴𝑗𝑗′ > 𝑉𝑉𝑗𝑗 𝐴𝐴𝑗𝑗 for some 𝑗𝑗 ∈ 𝑁𝑁

Which of the following rules is Pareto 
efficient?
• Round Robin • Both
• Max utilitarian social welfare • Neither

Poll

?



MAXIMUM NASH WELFARE

• The Nash welfare of an allocation 𝑨𝑨 is the 
product of values 

NW 𝑨𝑨 = �
𝑖𝑖∈𝑁𝑁

𝑉𝑉𝑖𝑖(𝐴𝐴𝑖𝑖)

• The maximum Nash welfare (MNW) solution 
chooses an allocation that maximizes the Nash 
welfare

• For ease of exposition we ignore the case of 
NW 𝑨𝑨 = 0 for all 𝑨𝑨

• Theorem: Assuming additive valuations, the 
MNW solution is EF1 and Pareto efficient



PROOF OF THEOREM

• Efficiency is obvious, so we focus on EF1
• Assume for contradiction that 𝑖𝑖 envies 𝑗𝑗 by 

more than one good
• Let 𝑔𝑔⋆ ∈ argmin𝑔𝑔∈𝐴𝐴𝑗𝑗𝑉𝑉𝑗𝑗(𝑔𝑔)/𝑉𝑉𝑖𝑖(𝑔𝑔)

• Move 𝑔𝑔⋆ from 𝑗𝑗 to 𝑖𝑖 to obtain 𝑨𝑨′, we will 
show that NW 𝑨𝑨′ > NW(𝑨𝑨)

• It holds that 𝑉𝑉𝑘𝑘 𝐴𝐴𝑘𝑘 = 𝑉𝑉𝑘𝑘(𝐴𝐴𝑘𝑘′ ) for all 𝑘𝑘 ≠ 𝑖𝑖, 𝑗𝑗, 
𝑉𝑉𝑖𝑖 𝐴𝐴𝑖𝑖′ = 𝑉𝑉𝑖𝑖 𝐴𝐴𝑖𝑖 + 𝑉𝑉𝑖𝑖 𝑔𝑔⋆ , and             
𝑉𝑉𝑗𝑗 𝐴𝐴𝑗𝑗′ = 𝑉𝑉𝑗𝑗 𝐴𝐴𝑗𝑗 − 𝑉𝑉𝑗𝑗 𝑔𝑔⋆



PROOF OF THEOREM

• NW 𝐴𝐴′

NW 𝐴𝐴
> 1 ⇔ 1 − 𝑉𝑉𝑗𝑗 𝑔𝑔⋆

𝑉𝑉𝑗𝑗 𝐴𝐴𝑗𝑗
1 + 𝑉𝑉𝑖𝑖 𝑔𝑔⋆

𝑉𝑉𝑖𝑖 𝐴𝐴𝑖𝑖
> 1 ⇔

𝑉𝑉𝑗𝑗 𝑔𝑔⋆

𝑉𝑉𝑖𝑖 𝑔𝑔⋆
𝑉𝑉𝑖𝑖 𝐴𝐴𝑖𝑖 + 𝑉𝑉𝑖𝑖 𝑔𝑔⋆ < 𝑉𝑉𝑗𝑗 𝐴𝐴𝑗𝑗

• Due to our choice of 𝑔𝑔⋆,
𝑉𝑉𝑗𝑗 𝑔𝑔⋆

𝑉𝑉𝑖𝑖 𝑔𝑔⋆
≤
∑𝑔𝑔∈𝐴𝐴𝑗𝑗 𝑉𝑉𝑗𝑗 𝑔𝑔
∑𝑔𝑔∈𝐴𝐴𝑗𝑗 𝑉𝑉𝑖𝑖 𝑔𝑔

=
𝑉𝑉𝑗𝑗 𝐴𝐴𝑗𝑗
𝑉𝑉𝑖𝑖 𝐴𝐴𝑗𝑗

• Due to EF1 violation, we have
𝑉𝑉𝑖𝑖 𝐴𝐴𝑖𝑖 + 𝑉𝑉𝑖𝑖 𝑔𝑔⋆ < 𝑉𝑉𝑖𝑖 𝐴𝐴𝑗𝑗

• Multiply the last two inequalities to get the first ∎



TRACTABILITY OF MNW
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INTERFACE



AN OPEN PROBLEM

• An allocation 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 is envy free up to 
any good (EFX) if and only if 
∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,∀𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , 𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗\{𝑔𝑔}

• Strictly stronger than EF1, strictly weaker 
than EF

• An EFX allocation exists for two players 
with monotonic valuations (easy) and for 
three players with additive valuations (very 
hard)

• Existence is an open problem for 𝑛𝑛 ≥ 4
players with additive valuations
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