

Optimized

 OSpring 2023 | Lecture 10 Cake Cutting Ariel Procaccia | Harvard University

CAKE CUTTING

How to fairly divide a heterogeneous divisible good between players with different preferences?

THE PROBLEM

- Cake is interval [0,1]
- Set of players $\mathrm{N}=\{1, \ldots, n\}$
- Piece of cake $X \subseteq[0,1]$: finite union of subintervals of $[0,1]$

THE PROBLEM

- Each player $i \in N$ has a nonnegative valuation V_{i} over pieces of cake
- Additive: for $X \cap Y=\emptyset$, $V_{i}(X)+V_{i}(Y)=V_{i}(X \cup Y)$

- Normalized: For all $i \in N$, $V_{i}([0,1])=1$
- Divisible: $\forall \lambda \in[0,1]$ can cut $I^{\prime} \subseteq I$ s.t. $V_{i}\left(I^{\prime}\right)=\lambda V_{i}(I)$

FAIRNESS PROPERTIES

- Our goal is to find an allocation A_{1}, \ldots, A_{n}
- Proportionality:

$$
\forall i \in N, V_{i}\left(A_{i}\right) \geq \frac{1}{n}
$$

- Envy-Freeness (EF):

$$
\forall i, j \in N, V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)
$$

Poll 1
For $n=2$, which is stronger?

- Proportionality
- Equivalent
- Envy-Freeness
- Incomparable

FAIRNESS PROPERTIES

- Our goal is to find an allocation A_{1}, \ldots, A_{n}
- Proportionality:

$$
\forall i \in N, V_{i}\left(A_{i}\right) \geq \frac{1}{n}
$$

- Envy-Freeness (EF):

$$
\forall i, j \in N, V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)
$$

Poll 2
For $n \geq 3$, which is stronger?

- Proportionality
- Equivalent
- Envy-Freeness
- Incomparable

CUT-AND-CHOOSE

- Algorithm for $n=2$ [Procaccia and Procaccia, circa 1985]
- Player 1 divides into two pieces X, Y s.t.

$$
V_{1}(X)=1 / 2, V_{1}(Y)=1 / 2
$$

- Player 2 chooses preferred piece
- This is EF (hence proportional)

THE ROBERTSON-WEBB MODEL

- What is the complexity of Cut-andChoose?
- Input size is n
- Two types of operations
- $\operatorname{Eval}_{i}(x, y)$ returns $V_{i}([x, y])$
- $\operatorname{Cut}_{i}(x, \alpha)$ returns y such that $V_{i}([x, y])=\alpha$

THE ROBERTSON-WEBB MODEL

- Two types of operations
- $\operatorname{Eval}_{i}(x, y)$ returns $V_{i}([x, y])$
- $\operatorname{Cut}_{i}(x, \alpha)$ returns y such that $V_{i}([x, y])=\alpha$

Poll 3

\#Operations needed to find an EF allocation when $n=2$?

- One
- Three
- Four

DUBINS-SPANIER

- Referee continuously moves knife
- Repeat: when piece left of knife is worth $1 / n$ to player, player shouts "stop" and gets piece
- That player is removed
- Last player gets remaining piece

DUBINS-SPANIER PROTOCOL

DUBINS-SPANIER

- Referee continuously moves knife
- Repeat: when piece left of knife is worth $1 / n$ to player, player shouts "stop" and gets piece
- That player is removed
- Last player gets remaining piece

$$
\text { Poll } 4
$$

What is the complexity of DS?

- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta\left(n^{2}\right)$
- $\Theta\left(n^{2} \log n\right)$

DUBINS-SPANIER

DUBINS-SPANIER

DUBINS-SPANIER

$1 / 3$

DUBINS-SPANIER

$1 / 3$

EVEN-PAZ

- Given $[x, y]$, assume $n=2^{k}$ for ease of exposition
- If $n=1$, give $[x, y]$ to the single player
- Otherwise, each player i makes a mark z_{i} s.t.

$$
V_{i}\left(\left[x, z_{i}\right]\right)=\frac{1}{2} V_{i}([x, y])
$$

- Let z^{*} be the $n / 2$ mark from the left
- Recurse on $\left[x, z^{*}\right]$ with the left $n / 2$ players, and on $\left[z^{*}, y\right]$ with the right $n / 2$ players

EVEN-PAZ

EVEN-PAZ

- Theorem: The Even-Paz protocol produces a proportional allocation
- Proof:
- At stage 0 , each of the n players values the whole cake at 1
- At each stage the players who share a piece of cake value it at least at $V_{i}([x, y]) / 2$
- Hence, if at stage k each player has value at least $1 / 2^{k}$ for the piece they're sharing, then at stage $k+1$ each player has value at least $\frac{1}{2^{k+1}}$
- The number of stages is $\log n ■$

$$
T(1)=0, T(n)=2 n+2 T\left(\frac{n}{2}\right)
$$

Overall: $2 n \log n$

COMPLEXITY OF PROPORTIONALITY

- Theorem: Any proportional protocol needs $\Omega(n \log n)$ operations in the RW model
- The Even-Paz protocol is provably optimal!
- What about envy?

SELFRIDGE-CONWAY

- Stage 0
- Player 1 divides the cake into three equal pieces according to V_{1}
- Player 2 trims the largest piece s.t. there is a tie between the two largest pieces according to V_{2}
- Cake 1 = cake w/o trimmings, Cake $2=$ trimmings
- Stage 1 (division of Cake 1)
- Player 3 chooses one of the three pieces of Cake 1
- If player 3 did not choose the trimmed piece, player 2 is allocated the trimmed piece
- Otherwise, player 2 chooses one of the two remaining pieces
- Player 1 gets the remaining piece
- Denote the player $i \in\{2,3\}$ that received the trimmed piece by T, and the other by T^{\prime}
- Stage 2 (division of Cake 2)
- T^{\prime} divides Cake 2 into three equal pieces according to $V_{T^{\prime}}$
- Players $T, 1$, and T^{\prime} choose the pieces of Cake 2, in that order

THE COMPLEXITY OF EF

- Theorem [Brams and Taylor 1995]: There is an EF cake cutting algorithm in the RW model
- But it is unbounded
- Theorem [Aziz and Mackenzie 2016]: There is a bounded EF algorithm for any n, whose complexity is

$$
O\left(n^{n^{n^{n^{n}}}}\right)
$$

- Theorem [Procaccia 2009]: Any EF algorithm requires $\Omega\left(n^{2}\right)$ queries in the RW model

BIBLIOGRAPHY

S. J. Brams and A. Taylor. An Envy-Free Cake Division Protocol. The American Mathematical Monthly, 1995.
J. Edmonds and K. Pruhs. Cake Cutting Really Is Not a Piece of Cake. SODA 2006.
A. D. Procaccia. Thou Shalt Covet Thy Neighbor's Cake. IJCAI 2009.
H. Aziz and S. Mackenzie. A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents. FOCS 2016.

