

Optimized Democracy

Spring 2023 | Lecture 10 Cake Cutting Ariel Procaccia | Harvard University

CAKE CUTTING

How to fairly divide a heterogeneous divisible good between players with different preferences?

THE PROBLEM

- Cake is interval [0,1]
- Set of players $N = \{1, ..., n\}$
- Piece of cake $X \subseteq [0,1]$: finite union of subintervals of [0,1]

THE PROBLEM

- Each player *i* ∈ N has a nonnegative valuation V_i over pieces of cake
- Additive: for $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: For all $i \in N$, $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ can cut $I' \subseteq I$ s.t. $V_i(I') = \lambda V_i(I)$

FAIRNESS PROPERTIES

- Our goal is to find an allocation A_1, \dots, A_n
- Proportionality:

$$\forall i \in N, V_i(A_i) \ge \frac{1}{n}$$

• Envy-Freeness (EF): $\forall i, j \in N, V_i(A_i) \ge V_i(A_j)$

Poll 1

For n = 2, which is stronger?

- Proportionality
- Envy-Freeness
- Equivalent
 - Incomparable

FAIRNESS PROPERTIES

- Our goal is to find an allocation A_1, \dots, A_n
- Proportionality:

$$\forall i \in N, V_i(A_i) \ge \frac{1}{n}$$

• Envy-Freeness (EF): $\forall i, j \in N, V_i(A_i) \ge V_i(A_j)$

Poll 2

For $n \ge 3$, which is stronger?

- Proportionality
- Envy-Freeness
- Equivalent
 - Incomparable

CUT-AND-CHOOSE

- Algorithm for *n* = 2 [Procaccia and Procaccia, circa 1985]
- Player 1 divides into two pieces X, Y s.t. $V_1(X) = 1/2, V_1(Y) = 1/2$
- Player 2 chooses preferred piece
- This is EF (hence proportional)

THE ROBERTSON-WEBB MODEL

- What is the complexity of Cut-and-Choose?
- Input size is *n*
- Two types of operations
 - $\operatorname{Eval}_i(x, y)$ returns $V_i([x, y])$
 - $\operatorname{Cut}_i(x, \alpha)$ returns y such that $V_i([x, y]) = \alpha$

THE ROBERTSON-WEBB MODEL

- Two types of operations
 - $\operatorname{Eval}_i(x, y)$ returns $V_i([x, y])$
 - $\operatorname{Cut}_i(x, \alpha)$ returns y such that $V_i([x, y]) = \alpha$

Poll 3

#Operations needed to find an EF allocation when n = 2?

- Three One
- Two
 - Four

- Referee continuously moves knife
- Repeat: when piece left of knife is worth 1/n to player, player shouts "stop" and gets piece
- That player is removed
- Last player gets remaining piece

DUBINS-SPANIER PROTOCOL

- Referee continuously moves knife
- Repeat: when piece left of knife is worth 1/n to player, player shouts "stop" and gets piece
- That player is removed
- Last player gets remaining piece

Poll 4

What is the complexity of DS?

- $\Theta(n)$ $\Theta(n^2)$
- $\Theta(n \log n)$ $\Theta(n^2 \log n)$

EVEN-PAZ

- Given [x, y], assume $n = 2^k$ for ease of exposition
- If n = 1, give [x, y] to the single player
- Otherwise, each player *i* makes a mark z_i s.t. $V_i([x, z_i]) = \frac{1}{2}V_i([x, y])$
- Let z^* be the n/2 mark from the left
- Recurse on [x, z*] with the left n/2 players, and on [z*, y] with the right n/2 players

EVEN-PAZ

- Theorem: The Even-Paz protocol produces a proportional allocation
- Proof:
 - At stage 0, each of the *n* players values the whole cake at 1
 - At each stage the players who share a piece of cake value it at least at V_i([x, y])/2
 - Hence, if at stage k each player has value at least $1/2^k$ for the piece they're sharing, then at stage k + 1 each player has value at least $\frac{1}{2^{k+1}}$
 - The number of stages is $\log n$

COMPLEXITY OF PROPORTIONALITY

- Theorem: Any proportional protocol needs Ω(n logn) operations in the RW model
- The Even-Paz protocol is provably optimal!
- What about envy?

SELFRIDGE-CONWAY

• Stage 0

- Player 1 divides the cake into three equal pieces according to V_1
- Player 2 trims the largest piece s.t. there is a tie between the two largest pieces according to V_2
- Cake 1 = cake w/o trimmings, Cake 2 = trimmings
- Stage 1 (division of Cake 1)
 - Player 3 chooses one of the three pieces of Cake 1
 - If player 3 did not choose the trimmed piece, player 2 is allocated the trimmed piece
 - Otherwise, player 2 chooses one of the two remaining pieces
 - Player 1 gets the remaining piece
 - Denote the player $i \in \{2, 3\}$ that received the trimmed piece by T, and the other by T'
- Stage 2 (division of Cake 2)
 - T' divides Cake 2 into three equal pieces according to $V_{T'}$
 - Players *T*, 1, and *T'* choose the pieces of Cake 2, in that order

THE COMPLEXITY OF EF

- Theorem [Brams and Taylor 1995]: There is an EF cake cutting algorithm in the RW model
- But it is unbounded
- Theorem [Aziz and Mackenzie 2016]: There is a bounded EF algorithm for any *n*, whose complexity is

$$O\left(n^{n^{n^n}}\right)$$

• Theorem [Procaccia 2009]: Any EF algorithm requires $\Omega(n^2)$ queries in the RW model

BIBLIOGRAPHY

S. J. Brams and A. Taylor. An Envy-Free Cake Division Protocol. The American Mathematical Monthly, 1995.

J. Edmonds and K. Pruhs. Cake Cutting Really Is Not a Piece of Cake. SODA 2006.

A. D. Procaccia. Thou Shalt Covet Thy Neighbor's Cake. IJCAI 2009.

H. Aziz and S. Mackenzie. A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents. FOCS 2016.