
Economics and Computation (Spring 2025)

Assignment #5

— Solutions —

Due: 4/30/2025 11:59pm ET

Problem 1: Random assignment

[15 points] A random assignment P is envy free if for all i, j ∈ N and x ∈ G,
∑

y⪰σix
piy ≥∑

y⪰σix
pjy.

Prove that the Probabilistic Serial Mechanism produces an envy-free random assignment.

Solution:

First, fix any i, j ∈ N and x ∈ G. Without loss of generality, assume that players eat throughout
the time interval [0, 1]. Thus, as each player is eating a uniform rate, if a player eats for a duration
t, they will accrue a total of t in total probability of receiving some item (potentially across different
items). Now, denote Y = {y : y ≻σi x} to be the set of all items player i prefers to x. Further, denote
tY ∈ [0, 1] to be the first time that all items in Y are fully eaten. At this point in the mechanism,
the probabilities associated with each item y ∈ Y have been fully allocated. Additionally, we know
that

∑
y⪰σix

piy = tY because agent i will have spent all time [0, tY ] eating goods in Y before they

then begin eating the their next good. Thus, we get that

∑
y⪰σix

piy = tY ≥
∑

y⪰σix

pjy

Note that the inequality follows from the fact that player j’s total accrued probabilities at time tY
will be tY , and at this point pjy for all y ∈ Y will be fully determined, and so

∑
y⪰σix

≤ tY where

equality holds only if agent j has been eating goods in Y for all of times [0, tY ].

Problem 2: Cascade models

[10 points] In Lecture 17 we discussed the coordination game. Consider a similar game, called the
local public goods game, which is defined using the notation used in Slide 3. The possible actions
are again ai ∈ {0, 1}, but here 1 corresponds to investing in a good that is useful to the neighbors
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of i, and 0 corresponds to not investing. The utility of i is

ui(a) =


1− c ai = 1

1 ai = 0 and ni,1(a−i) ≥ 1

0 otherwise

That is, i gets a payoff of 1 if at least one player in their neighborhood (including themselves)
invests, but investment has a cost of c ∈ (0, 1).

Design a polynomial-time algorithm that computes a pure Nash equilibrium in a given local public
goods game.

Solution:

Any action profile where players playing 1 form an independent set and all other players play 0 is
a Nash equilibrium. Specifically, this maximal independent set (not to be confused with maximum
independent set) must be constructed such that each vertex is connected to at least one vertex in
the independent set. In these action profiles, the players playing 1 are only connected to a player
playing 0, and each player playing 0 is connected to at least 1 player playing 1. These profiles are
pure Nash equilibria because the players playing 1 will not want to switch to 0 because this will
reduce their payoff from 1− c to 0, and the players playing 0 will not want to switch to 1 because
this will reduce their payoff from 1 to 1− c.

A greedy algorithm can easily compute such an independent set by iteratively adding vertices that
are not connected to the previous ones. This algorithm takes O(|V |+ |E|).

Problem 3: Influence maximization

[15 pts] Given an undirected graph G = (V,E), define the following set function over subsets
S ⊆ V :

f(S) = |{(u, v) ∈ E : u ∈ S, v /∈ S}|.

Is f monotone? Is it submodular? Prove or disprove each property.

Solution: f is not monotone. Proof by counterexample. An easy counterexample is by considering
S = V and so f(S) = 0 because there are no edges of G that cross the boundary out of S. Making
this clearer, consider V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1)} (a triangle). Then, consider
S1 = {1} and S2 = {1, 2, 3} = V . Then, we have that S1 ⊆ S2 but

f(S1) = |{(1, 2), (1, 3)}| = 2

f(S2) = |∅| = 0

and so f(S1) > f(S2), contradicting monotonicity.

f is submodular. We wish to show that for anyX ⊆ Y ⊆ V and any z ̸∈ Y then f(X∪{z})−f(X) ≥
f(Y ∪ {z})− f(Y ). We first note that
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f(X ∪ {z})− f(X) = |(z, v) ∈ E : v ̸∈ X ∪ {z}}| − |(v, z) ∈ E : v ∈ X}|

because we are adding in the edges connected to z and the rest of V , but are getting rid of the
edges that are connected to z from vertices inside X. Similarly,

f(Y ∪ {z})− f(Y ) = |(z, v) ∈ E : v ̸∈ Y ∪ {z}}| − |(v, z) ∈ E : v ∈ Y }|

Now, since X ⊆ Y , it is clear that

|(z, v) ∈ E : v ̸∈ X ∪ {z}}| ≥ |(z, v) ∈ E : v ̸∈ Y ∪ {z}}|

|(v, z) ∈ E : v ∈ X}| ≤ |(v, z) ∈ E : v ∈ Y }|

and thus we conclude that

f(X ∪ {z}) ≥ f(Y ∪ {z})− f(Y )

Problem 4: No-regret learning

[15 pts] Consider the analysis of (deterministic) weighted majority in Lecture 19, Slides 10–13.
Assume that there is a perfect expert that never makes mistakes. Show that there is a value of
ϵ such that the modified weighted majority algorithm (Slide 13) makes at most log2 n mistakes,
where n is the number of experts.

Solution: Inspired by the construction in lecture, we define M to be the total number of mistakes
made so far by the algorithm and W be the total weight, which starts at n as each of n experts
contributes 1 to the weight at the start.

Every time the algorithm makes a mistake, this means that a weighted majority of the experts,
comprising at least 1

2 of the current total weight, were wrong. An ϵ fraction of this weight is taken
away from these experts. This means that after each mistake, W drops by at least ϵ

2 , so after
M mistakes, W ≤ n(1 − ϵ

2)
M . Since the perfect expert never makes mistakes, its weight remains

forever at 1.

This means that at any given point,

1 ≤ n
(
1− ϵ

2

)M
,

since the sum of all the weights has to be at least as large as the highest weight that contributes
to this sum.

Taking the log2 of both sides, we have

log2

(
1

n

)
≤ M log2

(
1− ϵ

2

)
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After some arithmetic with the logarithms, we have

log2(n) ≥ M log2

(
2

2− ϵ

)

If we set ϵ = 1, then log2(n) ≥ M log2(2), and it follows that log2(n) ≥ M . Thus, there is a value
of ϵ such that the modified weighted majority algorithm makes at most log2 n mistakes.

Problem 5: Feature attribution

[15 points] The Shapley value is hard to compute, but it is easy to estimate accurately using a
Monte Carlo algorithm. Specifically, given a player i whose Shapley value we wish to estimate,
consider the following algorithm: For t = 1, . . . ,m, sample a random permutation πt and compute
v(Si

πt
∪{i})−v(Si

πt
); then return the marginal contribution of i averaged across them samples.

Assume that v(S) ∈ [0, 1] for all S ⊆ N and v is monotonic. Show that, given ϵ, δ > 0 and
m = O(ln(1/δ)/ϵ2), the above algorithm outputs an estimate σ̂i of the Shapley value of i such that
|σi − σ̂i| < ϵ with probability at least 1− δ.

Guidance: Each sample is a random variable; what can you say about their expectations? Plug
these random variables into Hoeffding’s Inequality: Let X1, . . . , Xm be i.i.d. random variables
bounded in [0, 1] with E[Xj ] = µ for j = 1, . . . ,m, then

Pr

[∣∣∣∣∣ 1m
m∑
t=1

Xt − µ

∣∣∣∣∣ ≥ ϵ

]
≤ 2 · e−2mϵ2 .

Solution: As given, we use the following Monte Carlo algorithm to estimate the Shapley value
of player i by sampling random permutations and averaging the marginal contributions.

For each sample t = 1, ...,m, we:

1. Randomly generate a permutation πt of all players

2. Find Si
πt
, the set of all players preceding i in permutation πt

3. Calculate Xt = v(Si
πt

∪ {i})− v(Si
πt
), which represents i’s marginal contribution

4. After m samples, return σ̂i =
1
m

∑m
t=1Xt as our estimate

Each sample Xj is an independent random variable bounded in [0, 1] (since v(S) ∈ [0, 1] for all
coalitions S and it is monotonic). Furthermore, E[Xj ] = σi because the Shapley value is precisely
the expected marginal contribution across all permutations. Since our algorithm samples permu-
tations uniformly at random, each Xj provides an unbiased estimate of the true Shapley value
σi.

Applying Hoeffding’s inequality to these i.i.d. bounded random variables:

Pr

[∣∣∣∣∣ 1m
m∑
t=1

Xt − σi

∣∣∣∣∣ ≥ ϵ

]
≤ 2 · e−2mϵ2
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Taking the complement and using our estimator notation:

Pr [|σ̂i − σi| < ϵ] ≥ 1− 2 · e−2mϵ2 ,

which is equivalent to
Pr [|σi − σ̂i| < ϵ] ≥ 1− 2 · e−2mϵ2 .

We thus introduce δ such that

Pr [|σi − σ̂i| < ϵ] ≥ 1− 2 · e−2mϵ2 ≥ 1− δ

We focus on:
1− 2 · e−2mϵ2 ≥ 1− δ

This is equivalent to saying that
δ ≥ 2 · e−2mϵ2

ln δ ≥ ln(2)− 2mϵ2

Solving for m, we need at least:

m ≥ ln(2)− ln(δ)

2ϵ2
=

ln(2) + ln(1/δ)

2ϵ2

Therefore, given ϵ, δ > 0 and m = O(ln(1/δ)/ϵ2) samples, the algorithm with a polynomial number
of samples outputs an estimate σ̂i of the Shapley value of i such that |σi − σ̂i| < ϵ with probability
at least 1− δ.

This shows we can approximate Shapley values to arbitrary precision with high probability us-
ing only a polynomial number of samples, making an approximation tractable even for large
games.

Problem 6: Formulate a research question

[30 points] Formulate a research question that is relevant to one of the topics covered in this
assignment: random assignment, cascade models, influence maximization, no-regret learning, and
cooperative game theory. Refer to this document for guidelines.

During the process of formulating your question, keep track of your findings in a “research journal.”
At a minimum, it should include brainstorming ideas for questions and notes on relevant papers
that you have identified.

Please submit the following deliverables:

1. Your research question.

2. A brief explanation of why it satisfies each of the following criteria:

(a) Relevant: Which course topics is the question related to?
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(b) Nontrivial: What is an immediate way of attempting to answer the question and why
does it fail?

(c) Feasible: How would you tackle the question if you had the entire semester?

(d) Novel: List the 1–3 most closely related papers that you have identified in your literature
review and explain how your question differs.

Note: Your writeup of all four parts of Item 2 must be at most two pages long overall.

3. Append your research journal to the PDF that contains your solutions. The research journal
will not be graded; it is there to show your work.
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