
Economics and Computation (Spring 2025)

Assignment #2

— Solutions —

Due: 2/26/2025 11:59pm ET

Problem 1: The price of anarchy

Consider the following scheduling game. The players N = {1, . . . , n} are associated with tasks,
each with weight wi. There is also a set M of m machines. Each player chooses a machine to
place their task on, that is, the strategy space of each player is M . A strategy profile induces an
assignment A : N → M of players (or tasks) to machines; the cost of player i is the total load
on the machine to which i is assigned: ℓA(i) =

∑
j∈N : A(j)=A(i)wj . Our objective function is the

makespan, which is the maximum load on any machine: cost(A) = maxµ∈M ℓµ. It is known that
scheduling games always have pure Nash equilibria.

1. [15 points] Let G be a scheduling game with n tasks of weight w1, . . . , wn, and m machines.
Let A : N → M be a Nash equilibrium assignment. Prove that

cost(A) ≤
(
2− 2

m+ 1

)
· opt(G).

That is, the price of anarchy is at most 2− 2/(m+ 1).

Solution: The solution is copied from the proof of Theorem 20.5 in the AGT book [2].

Let j∗ be the machine with highest load under the given Nash equilibrium assignment A, and
let i∗ be a task of smallest weight assigned to this machine. Without loss of generality there
are two tasks assigned to j∗ as otherwise cost(A) = OPT(G), and the bound trivially follows.
Thus wi∗ ≤ 1

2cost(A).

Suppose there is a machine j ̸= j∗ with load less than ℓj∗ − wi∗ . Then moving i∗ from j∗ to
j would decrease the cost of this task. Hence, as A is a Nash equilibrium, it holds that

ℓj ≥ ℓj∗ − wi∗ ≥ cost(A)− 1

2
cost(A) =

1

2
cost(A).

Now observe that the cost of an optimal assignment cannot be smaller than the average load
across all machines, so

OPT(G) ≥
∑

iwi

m
=

∑
j ℓj

m
≥

cost(A) + 1
2cost(A)(m− 1)

m
=

(m+ 1)cost(A)

2m
.
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It follows that

cost(A) ≤ 2m

m+ 1
·OPT(G) =

(
2− 2

m+ 1

)
·OPT(G).

2. [10 points] Prove that the upper bound of part (a) is tight, by constructing an appropriate
family of scheduling games for each m ∈ N.

Solution: Consider a game G with n = 2m: m small jobs with weight 1, and m large jobs
with weight m. Clearly OPT(G) = m+1, by putting one small job and one large job on each
machine.

Now, consider the assignment A that puts two large jobs on machine 1, all the small jobs on
machine 2, and one large job on each of the machines 3, . . . ,m. It holds that cost(A) = 2m
and A is a Nash equilibrium.

Problem 2: Voting rules

[10 points] When the number of alternatives is m, a positional scoring rule is defined by a score
vector (s1, . . . , sm) such that sk ≥ sk+1 for all k = 1, . . . ,m − 1. Each voter gives sk points to
the alternative they rank in position k, and the points are summed over all voters. We discussed
two examples of positional scoring rules: plurality, defined by the vector (1, 0, . . . , 0), and Borda,
defined by the vector (m−1,m−2, . . . , 0). Another common example is veto, defined by the vector
(1, . . . , 1, 0).

For the case of m = 3, prove that any positional scoring vector with s2 > s3 is not Condorcet
consistent.

Hint: It is possible to do this via a single preference profile that includes 7 voters.

Solution: Consider the following preference profile for 7 voters among three alternatives a1, a2, a3:

Voter Group Ranking

3 voters a1 ≻ a2 ≻ a3
2 voters a2 ≻ a3 ≻ a1
1 voter a2 ≻ a1 ≻ a3
1 voter a3 ≻ a1 ≻ a2

We want to show that no scoring vector with s2 > s3 elects the Condorcet winner, which is a1,
since a1 beats a2 and a3 in direct comparisons with 4 out of 7 votes in both cases.

Let (s1, s2, s3) be an arbitrary scoring vector. The points each alternative receives are:

Candidate Points

a1 3s1 + 2s2 + 2s3
a2 3s1 + 3s2 + 1s3
a3 1s1 + 2s2 + 4s3

We see that
score(a1)− score(a2) = s3 − s2 < 0,

since s2 > s3. Therefore, a2 is elected winner, but a1 is the Condorcet winner, so the positional
scoring rule defined by (s1, s2, s3) is not Condorcet consistent.
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Problem 3: The epistemic approach to voting

[10 points] Suppose that there is a true ranking of m alternatives, each of n voters evaluates all
pairs of alternatives according to the Condorcet noise model (Lecture 6, slide 5) with p > 1/2, and
these comparisons are aggregated into a voting matrix. Prove that the output of the Kemeny rule
applied to this voting matrix coincides with the true ranking with probability that goes to 1 as n
goes to infinity.

Hint: Use the Condorcet Jury Theorem (or the law of large numbers).

Solution: According to the Condorcet noise model’s assumptions, let the true ranking of the m
alternatives be a1 ≻ a2 ≻ · · · ≻ am. We know for any i < j, each voter independently votes for ai
over aj w.p. p > 0.5 (in other words, they vote ‘correctly’ more than half the time, and the ‘wrong’
votes are the noise introduced).

Where i < j, let Vij be the entry in the voting matrix corresponding to the number of voters who
voted for ai over aj . By the Condorcet Jury Theorem, the probability that Vij > 1/2 goes to 1 as
n goes to infinity. By taking a union bound over all i < j, we have that

lim
n→∞

Pr[∀i < j, Vij > 1/2] = 1.

Hence, the ranking that minimizes the sum of Kendall tau distances will be the true ranking w.p.
approaching 1.

Problem 4: Strategic manipulation in elections

We saw in class a proof sketch of the Gibbard-Satterthwaite Theorem for the special case of strat-
egyproof and neutral voting rules with m ≥ 3 and m ≥ n. That proof relied on two key lemmas.
In this problem, you will prove the two lemmas and formalize the theorem’s proof for this special
case.

Prove the following statements.

1. [10 points] Let f be a strategyproof voting rule, σ = (σ1, . . . , σn) be a preference profile,
and f(σ) = a. If σ′ is a profile such that [a ≻σi x ⇒ a ≻σ′

i
x] for all x ∈ A and i ∈ N , then

f(σ′) = a.

Solution: The proofs of all three parts are copied from Svensson [1]. Suppose first that
σi = σ′

i for i > 1. Let f(≻σ′
1
,≻σ′

−1
) = b. From strategyproofness it follows that a ⪰σ1 b,

and hence from the assumption of the lemma, a ⪰σ′
1
b. Strategyproofness also implies that

b ⪰σ′
1
a, and because preferences are strict it follows that a = b. The lemma now follows after

repeating this argument while changing the preferences for only i = 2, then i = 3, etc.

2. [10 points] Let f be a strategyproof and onto voting rule. Furthermore, let σ = (σ1, . . . , σn)
be a preference profile and a, b ∈ A such that a ≻σi b for all i ∈ N . Then f(σ) ̸= b.

Hint: use part (a).

Solution: Suppose that f(σ) = b. Since f is onto there is a profile σ′ such that f(σ′) = a.
Let σ′′ be such that for all i ∈ N , a ≻σ′′

i
b ≻σ′′

i
x for all x ∈ A \ {a, b}, and the rest of the
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alternatives are ranked identically to σi. By strong monotonicity (part (a)), b = f(σ) = f(σ′′)
and a = f(σ′) = f(σ′′), which is a contradiction. Hence f(σ) ̸= b.

3. [10 points] Let m be the number of alternatives and n be the number of voters, and assume
that m ≥ 3 and m ≥ n. Furthermore, let f be a strategyproof and neutral voting rule. Then
f is dictatorial.

Important note: There are many proofs of the full version of the Gibbard-Satterthwaite
Theorem; here the task is specifically to formalize the proof sketch we did in class.

Solution: For this part of the proof it is convenient to define the preferences of each i ∈ N
via a utility function ui such that for x, y ∈ A, x ≻σi y if and only if ui(x) > ui(y). Therefore,
f(u) is well defined. We will also denote A = {a1, . . . , am}.

For each i ∈ N , let

ui(aj) =


n+ i− j i ≤ j ≤ n

i− j j < i

n− j j > n

That is, the ranking of a1, . . . , an is shifted, and all other alternatives are ranked below them.
By Pareto optimality (part b), f(u) = aj for some j ≤ n. Assume w.l.o.g. that f(u) = a1.
Let u′ be defined as follows:

u′1(a1) = n+ 2 and u′1(an) = n+ 1,

u′i(an) = n+ 2 and u′i(a1) = n+ 1 for i > 1,

u′i(aj) = ui(aj) otherwise

Hence all voters consider the alternatives a1 and an to be better than the other alternatives.
Also note that the ranking of a1 and an is the same in the profiles u and u′; and in u′, a1
and an are both ranked above other alternatives. Hence by strong monotonicity (part (a)),
f(u′) = f(u) = a1.

Finally, define profiles uk for k = 1, . . . , n, where u1 = u′, and

uk+1
i (x) =


uki (x) i ̸= k + 1

ukk+1(x) i = k + 1 and x ∈ A \ {a1}
−m i = k + 1 and x = a1

By Pareto optimality (part (b)), f(uk) ∈ {a1, an}. But strategyproofness implies that
f(uk) = a1, and hence f(un) = a1. In un, a1 is ranked at the top by voter 1, and at
the bottom by every other voter. Monotonicity (part (a)) implies that a1 is the winner
whenever voter 1 puts a1 at the top. Neutrality then implies that voter 1 is a dictator.

References

[1] L.-G. Svensson. The proof of the Gibbard-Satterthwaite theorem revisited. Working
Paper No. 1999:1, Department of Economics, Lund University, 1999. Available from:
http://www.nek.lu.se/NEKlgs/vote09.pdf.

4
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