Economics and Computation (Spring 2025)
Assignment #2
— Solutions —

Due: 2/26/2025 11:59pm ET

Problem 1: The price of anarchy

Consider the following scheduling game. The players N = {1,...,n} are associated with tasks,
each with weight w;. There is also a set M of m machines. Each player chooses a machine to
place their task on, that is, the strategy space of each player is M. A strategy profile induces an
assignment A : N — M of players (or tasks) to machines; the cost of player i is the total load
on the machine to which i is assigned: £4;) = ZjeN: AG)=A(3i) Wi+ Our objective function is the
makespan, which is the maximum load on any machine: cost(A) = max,enr £,. It is known that
scheduling games always have pure Nash equilibria.

1. [15 points] Let G be a scheduling game with n tasks of weight wy, ..., w,, and m machines.
Let A: N — M be a Nash equilibrium assignment. Prove that

cost(A) < <2 - ’rn2—|—1> . opt(G).

That is, the price of anarchy is at most 2 — 2/(m + 1).
Solution: The solution is copied from the proof of Theorem 20.5 in the AGT book [2].

Let j* be the machine with highest load under the given Nash equilibrium assignment A, and
let i* be a task of smallest weight assigned to this machine. Without loss of generality there
are two tasks assigned to j* as otherwise cost(A4) = OPT(G), and the bound trivially follows.
Thus w;+ < Fcost(A).

Suppose there is a machine j # j* with load less than £;+ — w;«. Then moving ¢* from j* to
j would decrease the cost of this task. Hence, as A is a Nash equilibrium, it holds that

1 1
U > Uy — wi= > cost(A) — icost(A) = gcost(A).

Now observe that the cost of an optimal assignment cannot be smaller than the average load
across all machines, so

W 0 . 1 B
OPT(G) > Siwi _ 25l . cost(A) + jeost(A)(m —1) _ (m + 1)cost(A)
" m m 2m



It follows that )
-OPT(G) = <2 - ) -OPT(G).

2m

cost(A4) <

m+1 m—+1

2. [10 points] Prove that the upper bound of part (a) is tight, by constructing an appropriate
family of scheduling games for each m € N.

Solution: Consider a game G with n = 2m: m small jobs with weight 1, and m large jobs
with weight m. Clearly OPT(G) = m+ 1, by putting one small job and one large job on each
machine.

Now, consider the assignment A that puts two large jobs on machine 1, all the small jobs on
machine 2, and one large job on each of the machines 3,...,m. It holds that cost(A) = 2m
and A is a Nash equilibrium.

Problem 2: Voting rules

[10 points] When the number of alternatives is m, a positional scoring rule is defined by a score
vector (s1,...,8m) such that s > sxyq for all k = 1,...,m — 1. Each voter gives s, points to
the alternative they rank in position k, and the points are summed over all voters. We discussed
two examples of positional scoring rules: plurality, defined by the vector (1,0,...,0), and Borda,
defined by the vector (m—1,m—2,...,0). Another common example is veto, defined by the vector
(1,...,1,0).

For the case of m = 3, prove that any positional scoring vector with sy > s3 is not Condorcet
consistent.

Hint: It is possible to do this via a single preference profile that includes 7 voters.

Solution: Consider the following preference profile for 7 voters among three alternatives aq, as, as:

Voter Group Ranking
3 voters a] > as > as
2 voters as > as > aq
1 voter as > ai »~ as
1 voter as > ai > as

We want to show that no scoring vector with so > s3 elects the Condorcet winner, which is aq,
since a; beats ao and ag in direct comparisons with 4 out of 7 votes in both cases.

Let (s1, $2,83) be an arbitrary scoring vector. The points each alternative receives are:

Candidate Points
ai 381 + 289 + 253
ao 3s1 + 3s9 + 1s3
as 1s1 + 2s9 + 483

We see that
score(aj) — score(az) = s3 — s2 < 0,

since so > s3. Therefore, ay is elected winner, but a; is the Condorcet winner, so the positional
scoring rule defined by (s1, s2, s3) is not Condorcet consistent.



Problem 3: The epistemic approach to voting

[10 points| Suppose that there is a true ranking of m alternatives, each of n voters evaluates all
pairs of alternatives according to the Condorcet noise model (Lecture 6, slide 5) with p > 1/2, and
these comparisons are aggregated into a voting matrix. Prove that the output of the Kemeny rule
applied to this voting matrix coincides with the true ranking with probability that goes to 1 as n
goes to infinity.

Hint: Use the Condorcet Jury Theorem (or the law of large numbers).

Solution: According to the Condorcet noise model’s assumptions, let the true ranking of the m
alternatives be a1 > as > -+ > a,,. We know for any ¢ < j, each voter independently votes for a;
over a; w.p. p > 0.5 (in other words, they vote ‘correctly’ more than half the time, and the ‘wrong’
votes are the noise introduced).

Where ¢ < j, let V;; be the entry in the voting matrix corresponding to the number of voters who
voted for a; over a;. By the Condorcet Jury Theorem, the probability that V;; > 1/2 goes to 1 as
n goes to infinity. By taking a union bound over all ¢ < j, we have that

lim Pr[Vi <j, Vij; >1/2]=1.

n—o0

Hence, the ranking that minimizes the sum of Kendall tau distances will be the true ranking w.p.
approaching 1.

Problem 4: Strategic manipulation in elections

We saw in class a proof sketch of the Gibbard-Satterthwaite Theorem for the special case of strat-
egyproof and neutral voting rules with m > 3 and m > n. That proof relied on two key lemmas.
In this problem, you will prove the two lemmas and formalize the theorem’s proof for this special
case.

Prove the following statements.

1. [10 points] Let f be a strategyproof voting rule, & = (o1,...,0,) be a preference profile,
and f(o) = a. If 0’ is a profile such that [a =, ¥ = a =, 2] for all z € A and i € N, then

/(o) =a.

Solution: The proofs of all three parts are copied from Svensson [1]. Suppose first that
o; = oj for i > 1. Let f(>o/, ) = b. From strategyproofness it follows that a =5, b,
and hence from the assumption of the lemma, a Zor b. Strategyproofness also implies that
b =, a, and because preferences are strict it follows that a = b. The lemma now follows after
repeating this argument while changing the preferences for only ¢ = 2, then i = 3, etc.

2. [10 points| Let f be a strategyproof and onto voting rule. Furthermore, let o = (01,...,0,)
be a preference profile and a,b € A such that a >, b for all i € N. Then f(o) # b.

Hint: use part (a).

Solution: Suppose that f(o) =b. Since f is onto there is a profile o’ such that f(o’) = a.
Let o” be such that for all i € N, a =,/ b =5 x for all z € A\ {a,b}, and the rest of the



alternatives are ranked identically to o;. By strong monotonicity (part (a)), b= f(o) = f(o”)
and a = f(o’) = f(o”), which is a contradiction. Hence f(o) # b.

3. [10 points] Let m be the number of alternatives and n be the number of voters, and assume
that m > 3 and m > n. Furthermore, let f be a strategyproof and neutral voting rule. Then
f is dictatorial.

Important note: There are many proofs of the full version of the Gibbard-Satterthwaite
Theorem; here the task is specifically to formalize the proof sketch we did in class.

Solution: For this part of the proof it is convenient to define the preferences of each i € N
via a utility function u; such that for x,y € A, x =,, y if and only if u;(z) > u;(y). Therefore,
f(u) is well defined. We will also denote A = {a1,...,am}.

For each 1 € N, let
n+i—j5 1<j<n

ui(a;) =<i—j j<i
n—17j ji>n
That is, the ranking of a1, ..., a, is shifted, and all other alternatives are ranked below them.

By Pareto optimality (part b), f(u) = a; for some j < n. Assume w.lo.g. that f(u) = a1.
Let v’ be defined as follows:

ui(a1) =n+2 and vj(a,) =n+1,
“an) =n+2and u(a;) =n+1fori>1,

u;(aj) = ui(aj) otherwise

U;

Hence all voters consider the alternatives a; and a, to be better than the other alternatives.
Also note that the ranking of a; and a, is the same in the profiles u and «’; and in 4/, a1
and a, are both ranked above other alternatives. Hence by strong monotonicity (part (a)),

f) = f(u) = ar.

Finally, define profiles u”* for k = 1,...,n, where u!

=/, and

uk(x) i #k+1

ut (z) = up () i=k+1landzeA\{a}

1

-m i=k+1and x = ay

By Pareto optimality (part (b)), f(u*) € {a1,a,}. But strategyproofness implies that
f(uk) = a1, and hence f(u") = a;. In u", a; is ranked at the top by voter 1, and at
the bottom by every other voter. Monotonicity (part (a)) implies that a; is the winner
whenever voter 1 puts a; at the top. Neutrality then implies that voter 1 is a dictator.
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