

Spring 2025 | Lecture 9 Strategyproof Approximation Algorithms Ariel Procaccia | Harvard University

WHEN VCG FALLS SHORT

- VCG is an amazing mechanism
- Its Achilles heel, though, is in computing

$$f(\mathbf{v}) \in \operatorname{argmax}_{x \in A} \sum_{i \in N} v_i(x)$$

- What do we do if this optimization problem is computationally hard?
- We could solve it approximately, but then we would lose strategyproofness!
- Our goal: approximation and strategyproofness

SINGLE-MINDED AUCTIONS

A set G, |G| = m, of goods to allocate. Every player $i \in N$ has a target bundle $T_i \subseteq G$, and has value $v_i(S) = w_i \ge 0$ for $T_i \subseteq S$ and $v_i(S) = 0$ otherwise.

COMPUTATIONAL HARDNESS

- Theorem: Maximizing welfare in single-minded auctions is NP-hard
- Proof:
 - Immediate reduction from Independent Set
 - The set of items is E, there's a player for each vertex, desired bundle is adjacent edges and $w_i = 1$ for all $i \blacksquare$

GREEDY MECHANISM

The greedy single-minded auction for selling a set of items G receives bids (T_i, w_i) for all $i \in N$, and is defined by

- Allocation rule: sort bids in order of decreasing w_i , breaking ties arbitrarily, and accept bids greedily when they are still feasible
- Payment rule: each allocated player pays the critical value, i.e., the smallest w'_i such that the bid (T_i, w'_i) would be accepted

GREEDY MECHANISM: EXAMPLE

Poll 1

What is the payment of the rightmost player?

- ()
- 2
- 3
- 6

CRITICAL VALUES

- Let N_i be the set of winners if i is removed
- Define the conflict set of i as

$$N_i'(T_i) = \{ j \in N_i : T_i \cap T_j \neq \emptyset \}$$

• Lemma: Fixing the bids from others, the critical value of i is $w_i^c = \max_{j \in N_i'(T_i)} w_j$

STRATEGYPROOFNESS

Theorem: The greedy single-minded auction is strategyproof

• Proof:

- It isn't useful to report T'_i that doesn't contain T_i , so assume $T_i \subseteq T'_i$
- For any such T'_i , the allocation is monotone weakly increasing in the reported value w'_i
- From the lemma, i is allocated T_i' at price $w_i^c(T_i')$ if and only if $w_i' \ge w_i^c(T_i')$, so $w_i' = w_i$ is optimal
- ∘ (T_i, w_i) is weakly preferred to (T_i', w_i) for any $T_i \subseteq T_i'$ because $w_i^c(T_i) \le w_i^c(T_i')$ ■

APPROXIMATION

- An algorithm for a maximization problem is a *c*-approximation algorithm for $c \leq 1$ if for every instance \mathcal{I} , $ALG(\mathcal{I}) \geq c \cdot OPT(\mathcal{I})$
- An algorithm for a minimization problem is a *c*-approximation algorithm for $c \ge 1$ if for every instance \mathcal{I} , $ALG(\mathcal{I}) \leq c \cdot OPT(\mathcal{I})$

What is the approximation ratio of the greedy single-minded auction?

$$\circ 1/2 \quad \circ 1/3 \quad \circ \Theta(1/\log n) \quad \circ \Theta(1/n)$$

$$\circ \Theta(1/n)$$

APPROXIMATION

- Theorem: The greedy single-minded auction is a 1/d-approximation algorithm, where d is the maximum size of any target bundle
- A variant of the greedy auction where players are ordered by $w_i/\sqrt{|T_i|}$ gives a $1/\sqrt{m}$ -approximation for m items
- A better approximation is NP-hard

PROOF OF THEOREM

- Let N^{alg} denote the players allocated under the algorithm, and N^{opt} those allocated under OPT
- For $i \in N^{alg}$, if $i \notin N^{opt}$, let N_i be the set of players $j \in N^{opt}$ such that $w_j \leq w_i$ and $T_i \cap T_j \neq \emptyset$, and if $i \in N^{opt}$, let $N_i = \{i\}$

PROOF OF THEOREM

It holds that

$$\sum_{j \in N_i} w_j \le \sum_{j \in N_i} w_i \le d \cdot w_i$$

In addition,

$$N^{opt} = \bigcup_{i \in N^{alg}} N_i$$

We conclude that

$$OPT = \sum_{j \in N^{opt}} w_j \le \sum_{i \in N^{alg}} \sum_{j \in N_i} w_j \le d \sum_{i \in N^{alg}} w_i$$
$$= d \cdot ALG \blacksquare$$