

Spring 2025 | Lecture 7

Strategic Manipulation in Elections
Ariel Procaccia | Harvard University

REMINDER: THE VOTING MODEL

- Set of voters $N = \{1, ..., n\}$ (assume $n \ge 2$)
- Set of alternatives A; denote |A| = m
- Each voter has a ranking $\sigma_i \in \mathcal{L}$ over the alternatives; $x \succ_{\sigma_i} y$ means that voter i prefers x to y
- A preference profile $\sigma \in \mathcal{L}^n$ is a collection of all voters' rankings
- A social choice function is a function $f: \mathcal{L}^n \to A$

MANIPULATION

So far the voters were honest!

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing their vote, voter 3 achieves a better outcome!

1	2	3
b	b	а
а	а	b
С	С	С
d	d	d

1	2	3
b	b	а
а	а	С
С	С	d
d	d	b

Jean-Charles de Borda

1733-1799

"My rule is intended for honest men!"

STRATEGYPROOFNESS

- Denote $\sigma_{-i} = (\sigma_1, ..., \sigma_{i-1}, \sigma_{i+1}, ..., \sigma_n)$
- A social choice function f is strategyproof (SP) if a voter can never benefit from lying about their preferences:

$$\forall \boldsymbol{\sigma} \in \mathcal{L}^n, \forall i \in N, \forall \sigma_i' \in \mathcal{L}, f(\boldsymbol{\sigma}) \geqslant_{\sigma_i} f(\sigma_i', \boldsymbol{\sigma}_{-i})$$

Poll 1

Max *m* for which plurality is SP?

•
$$m = 2$$

•
$$m = 4$$

•
$$m = 3$$

•
$$m=\infty$$

THE G-S THEOREM

- A social choice function f is dictatorial if there is $i \in N$ such that for all $\sigma \in \mathcal{L}^n$, $f(\sigma)$ is the top-ranked alternative in σ_i
- Theorem [Gibbard 1973, Satterthwaite 1975]: Let $m \ge 3$, then a social choice function f is SP and onto A (any alternative can win) if and only if f is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

- Lemmas (prove in Assignment 2):
 - Strong monotonicity: If f is SP function, σ profile, $f(\sigma) = a$, then $f(\sigma') = a$ for all profiles σ' s.t. $\forall x \in A, i \in N$: $\left[a \succ_{\sigma_i} x \Rightarrow a \succ_{\sigma'_i} x\right]$
 - Unanimity: If f is SP and onto function, σ profile, then $[\forall i \in N, a \succ_{\sigma_i} b] \Rightarrow f(\sigma) \neq b$
- Let us assume that $m \ge n$, and neutrality: $f(\pi(\sigma)) = \pi(f(\sigma))$ for all $\pi: A \to A$

- Say n = 4 and $A = \{a, b, c, d, e\}$
- Consider the following profile

	1	2	3	4
$\sigma = $	а	b	С	d
	b	С	d	а
	С	d	а	b
	d	а	b	С
	е	е	е	е

- Unanimity $\Rightarrow e$ is not the winner
- Suppose $f(\sigma) = a$

1	2	3	4
a	b	С	d
b	С	d	а
С	d	a	b
d	а	b	С
e	е	е	е
		_	

1	2	3	4
а	d	d	d
d	а	а	а
b	b	b	b
С	С	С	С
е	е	е	е

 σ^1

• Strong monotonicity $\Rightarrow f(\sigma^1) = a$

1	2	3	4
а	d	d	d
d	а	a	а
b	b	b	b
С	С	С	С
е	е	e	е

1	2	3	4
а	d	d	d
d	b	a	а
b	С	b	b
С	е	С	С
е	a	e	е

 σ^1

 σ^2

Poll 2

How many options are there for $f(\sigma^2)$?

1 option

• 3 options

• 2 options

4 options

1	2	3	4	1	2	3	4	1	2	3	4
a	d	d	d	a	d	d	d	а	d	d	d
d	b	а	a	d	b	b	а	d	b	b	b
b	С	b	b	b	С	С	b	b	С	С	С
С	е	С	С	С	е	е	С	С	е	е	е
е	а	е	e	е	а	а	е	е	а	а	а
σ^2					σ	-3			σ	.4	

- Unanimity $\Rightarrow f(\sigma^j) \notin \{b, c, e\}$
- $[SP \Rightarrow f(\sigma^j) \neq d] \Rightarrow f(\sigma^j) = a$
- Strong monotonicity $\Rightarrow f(\sigma') = a$ for every σ' where 1 ranks a first
- Neutrality \Rightarrow 1 is a dictator

HARDNESS OF MANIPULATION

Manipulation may be unavoidable in theory, but we can we design "reasonable" voting rules where manipulation is computationally hard?

THE COMPUTATIONAL PROBLEM

- *f*-Manipulation problem:
 - Given votes of nonmanipulators and a preferred alternative p
 - Can manipulator cast
 vote that makes p
 uniquely win under f?
- Example: Borda, p = a

1	2	3
b	b	
а	а	
С	С	
d	d	

1	2	3
b	b	а
а	а	С
С	С	d
d	d	b

A GREEDY ALGORITHM

- Rank p in first place
- While there are unranked alternatives:
 - If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
 - Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а		а	а	b	а	а	С
С	С		С	С		С	С	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а	С	а	а	С	а	а	С
С	С	b	С	С	d	С	С	d
d	d		d	d		d	d	b

WHEN DOES THE ALG WORK?

- Theorem: Fix $i \in N$ and the votes of other voters. Let f be a rule s.t. \exists function $s(\sigma_i, x)$ such that:
 - 1. For every σ_i , f chooses an alternative that uniquely maximizes $s(\sigma_i, x)$
 - 2. If $\{y: y \prec_{\sigma_i} x\} \subseteq \{y: y \prec_{\sigma'_i} x\}$ then $s(\sigma_i, x) \leq s(\sigma'_i, x)$

Then the greedy algorithm decides the *f*-Manipulation problem correctly

PROOF OF THEOREM

- Suppose the algorithm failed, producing a partial ranking σ_i
- Assume for contradiction σ_i' makes p win
- $U \leftarrow$ alternatives not ranked in σ_i
- $u \leftarrow$ highest ranked alternative in U according to σ'_i
- Complete σ_i by adding u first, then others arbitrarily

PROOF OF THEOREM

- Property $2 \Rightarrow s(\sigma_i, p) \ge s(\sigma'_i, p)$
- Property 1 and σ'_i makes p the winner $\Rightarrow s(\sigma'_i, p) > s(\sigma'_i, u)$
- Property $2 \Rightarrow s(\sigma'_i, u) \ge s(\sigma_i, u)$
- Conclusion: $s(\sigma_i, p) > s(\sigma_i, u)$, so the alg could have inserted u next \blacksquare

HARD-TO-MANIPULATE RULES

Instant-Runoff Voting

Llull (w. tie breaking)

But worst-case hardness isn't necessarily an obstacle to manipulation in the average case!