

Spring 2025 | Lecture 6
The Epistemic Approach to Voting
Ariel Procaccia | Harvard University

CONDORCET STRIKES AGAIN

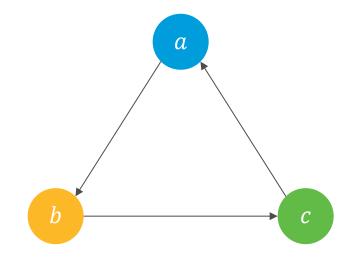
- For Condorcet, the purpose of voting is not merely to balance subjective opinions; it is a collective quest for the truth
- Enlightened voters try to judge which alternative best serves society
- This is an arguable model of political elections, but there are certainly settings where the ground-truth assumption holds true

CONDORCET JURY THEOREM

Theorem [Condorcet 1785]: Suppose that there is a correct alternative and an incorrect alternative, and there are n voters, each of whom votes independently for the correct alternative with probability p > 1/2, then the probability that the majority would be correct goes to 1 as $n \to \infty$

CONDORCET JURY THEOREM

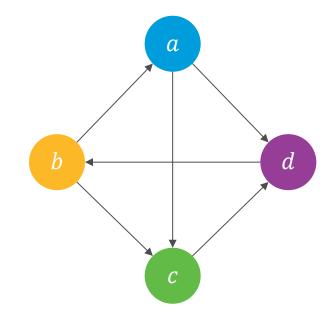
- The (modern) proof follows directly from the (weak) law of large numbers
- Lemma: Let $X_1, X_2, ...$ be an infinite sequence of i.i.d. random variables with expectation μ , then for any $\epsilon > 0$, $\lim_{n \to \infty} \Pr\left[|\bar{X}_n \mu| < \epsilon\right] = 1$
- Now take $\epsilon = p 1/2$



THE CASE OF $m \geq 3$

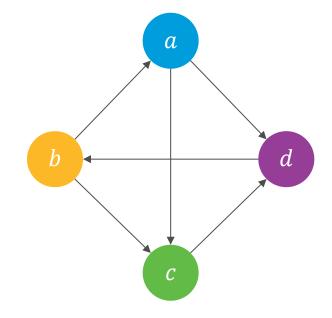
- In Condorcet's general model there is a true ranking of the alternatives
- Each voter evaluates every pair of alternatives independently, gets the comparison right with probability p>1/2
- The results are tallied in a voting matrix
- Condorcet's proposal: Find the "most probable" ranking by taking the majority opinion for each comparison; if a cycle forms, "successively delete the comparisons that have the least plurality"

CONDORCET'S "SOLUTION"


	a	b	С
а	-	8	6
b	5	-	11
С	7	2	-

Delete c > a to get a > b > c

CONDORCET'S "SOLUTION"


	а	b	С	d
а	-	12	15	17
b	13	-	16	11
С	10	9	-	18
d	8	14	7	-

Order of strength is c > d, a > d, b > c, a > c, d > b, b > a; deleting b > a leaves a cycle; deleting d > b creates ambiguity

CONDORCET'S "SOLUTION"

	а	b	С	d
а	-	12	15	17
b	13	-	16	11
С	10	9	-	18
d	8	14	7	-

Did Condorcet mean we should reverse the weakest comparisons? If we reverse b > a and d > b, we get a > b > c > d, with 89 votes, but reversing d > b leads to b > a > c > d with 90 votes

Isaac Todhunter

1820-1884

"The obscurity and self-contradiction are without any parallel, so far as our experience of mathematical works extends ... no amount of examples can convey an adequate impression of the evils."

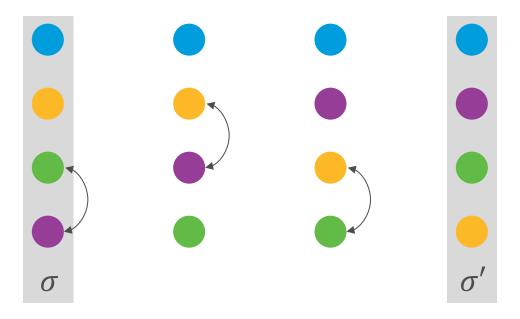
YOUNG'S SOLUTION

- M is the matrix of votes and π is the true ranking
- MLE maximizes $Pr[M \mid \pi]$
- Suppose true ranking is $a >_{\pi} b >_{\pi} c$; prob. of observations $\Pr[M \mid \pi]$:

$$\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{11} p^{11} (1-p)^2$$

• For $a >_{\pi} c >_{\pi} b$, $\Pr[M \mid \pi]$ is $\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{2} p^2 (1-p)^{11}$

• Binomial coefficients are identical, so $\Pr[M \mid \pi] \propto p^{\#agree} (1-p)^{\#disagree}$


	a	b	С
а	-	8	6
b	5	-	11
С	7	2	_

THE KENDALL TAU DISTANCE

• The Kendall tau distance between σ and σ' is defined as

$$d_{KT}(\sigma,\sigma') = \left| \left\{ \{a,b\}: \ a >_{\sigma} b \land b >_{\sigma'} a \right\} \right|$$

Can be thought of as "bubble sort distance"

THE MALLOWS MODEL

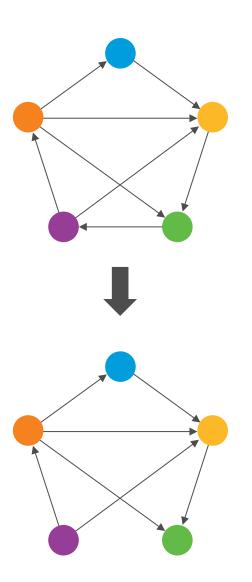
- Defined by parameter $\phi \in (0,1]$
- Probability of a voter having the ranking σ given true ranking π is

$$\Pr[\sigma|\pi] = \frac{\phi^{d_{KT}(\sigma,\pi)}}{\sum_{\tau} \phi^{d_{KT}(\tau,\pi)}}$$

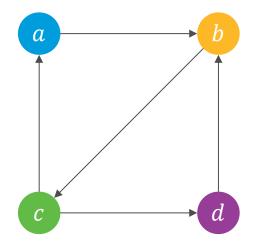
 Same as the Condorcet noise model where the process "restarts" if a cycle forms and

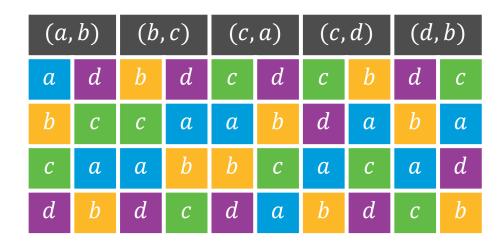
$$\phi = \frac{1 - p}{p}$$

THE KEMENY RULE


- What is probability of observing profile σ given true ranking π ?
- Denote $Z_{\phi} = \sum_{\tau} \phi^{d_{KT}(\tau,\pi)}$, then

$$\Pr[\boldsymbol{\sigma} \mid \boldsymbol{\pi}] = \prod_{i \in N} \frac{\phi^{d_{KT}(\sigma_i, \boldsymbol{\pi})}}{Z_{\phi}} = \frac{\phi^{\sum_{i \in N} d_{KT}(\sigma_i, \boldsymbol{\pi})}}{\left(Z_{\phi}\right)^n}$$


• The MLE is clearly the Kemeny Rule: Given a preference profile σ , return a ranking π that minimizes $\sum_{i \in N} d_{KT} (\sigma_i, \pi)$


COMPLEXITY OF KEMENY

- Theorem: Computing the optimal Kemeny score is NP-complete
- The proof exploits a connection to the Minimum Feedback Arc Set Problem: Given a directed graph G = (V, E) and $L \in \mathbb{N}$, is there $F \subseteq E$ s.t. $|F| \le L$ and $(V, E \setminus F)$ is acyclic?

PROOF IDEA

For each edge create a pair of voters that agree on the corresponding ordered pair of alternatives and disagree on everything else; there's an acyclic subgraph that deletes k edges if and only if there is a ranking that (beyond the inevitable disagreements) disagrees with k pairs of voters

KEMENY IN PRACTICE

In practice Kemeny computation is typically formulated as an integer linear program: For every $a, b \in A$, $x_{(a,b)} = 1$ iff a is ranked above b, and $w_{(a,b)} = \left| \{i \in \mathbb{N} : a \succ_{\sigma_i} b\} \right|$

```
minimize \sum_{(a,b)} x_{(a,b)} w_{(b,a)}

subject to:

for all distinct a,b \in A, x_{(a,b)} + x_{(b,a)} = 1

for all distinct a,b,c \in A, x_{(a,b)} + x_{(b,c)} + x_{(c,a)} \le 2

for all distinct a,b \in A, x_{(a,b)} \in \{0,1\}
```

AN AXIOMATIC VIEWPOINT

The axiomatic viewpoint isn't necessarily at odds with the epistemic viewpoint; how does Kemeny fare when examined through an axiomatic lens?

Poll

Which of the following axioms is satisfied by Kemeny?

- Condorcet consistency
- Unanimity

- Both axioms
- Neither one

