

Spring 2025 | Lecture 5
Voting Rules
Ariel Procaccia | Harvard University

PLURALITY

- Each person votes for a single alternative, and the alternative with most points wins
- A highly problematic voting rule!

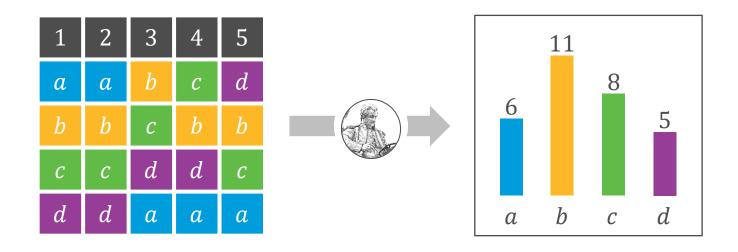
SOME BALLOT TYPES

Rankings

Approvals

Scores/stars

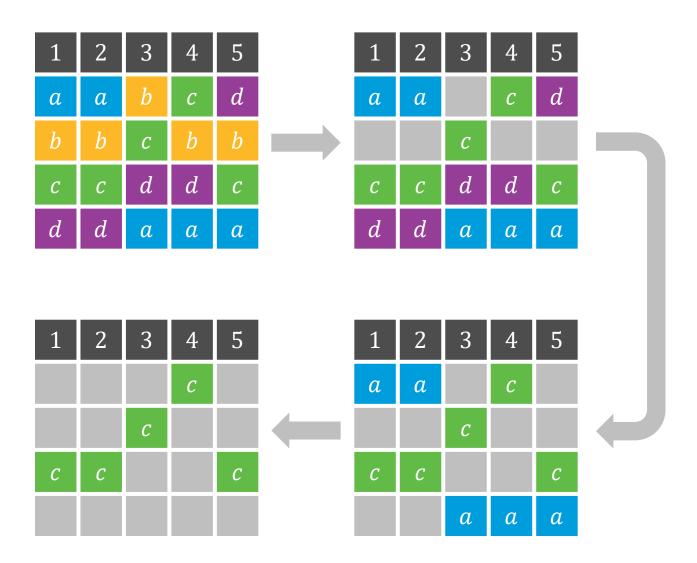
We will focus on rankings!


Jean-Charles de Borda

1733-1799

Mathematician, engineer, and naval officer. Also remembered as an instigator of the metric system.

BORDA COUNT


• Each voter awards m - k points to the alternative placed in the k'th position, where m is the number of alternatives

INSTANT-RUNOFF VOTING

- Also known as "alternative vote" and (misleadingly) "ranked-choice voting"
- Votes are tabulated in rounds, where in each round the alternative with the lowest plurality score is eliminated; last alternative left standing is the winner

INSTANT-RUNOFF VOTING

IRV AROUND THE WORLD

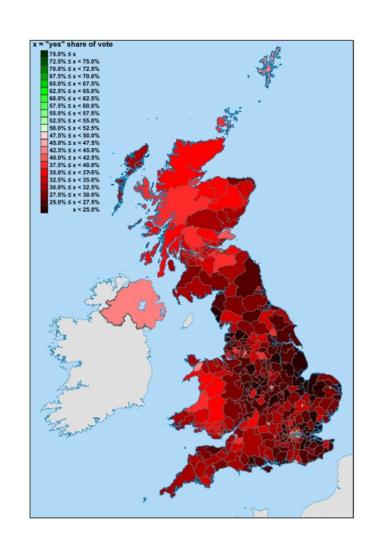
■ Ireland

Used for all public elections

Canada

Used in Ontario for municipal elections

Australia

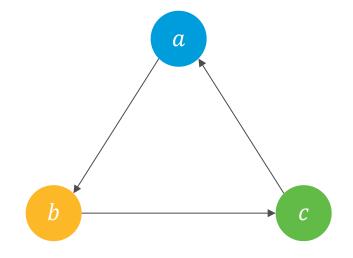

Used for parliamentary elections

USA

Used for statewide elections in ME and AK, and in cities like NYC and Cambridge

BARRIERS TO ADOPTION

- UK referendum (2011): Choose between plurality and IRV as a method for electing MPs
- Academics agreed IRV is better
- But IRV was seen as beneficial to a particular politician


Marquis de Condorcet

1743-1794

Philosopher, mathematician, enlightened nobleman. Also known for dying mysteriously in prison.

THE CONDORCET PARADOX

The preferences of the majority may be cyclical!

CONDORCET CONSISTENT RULES

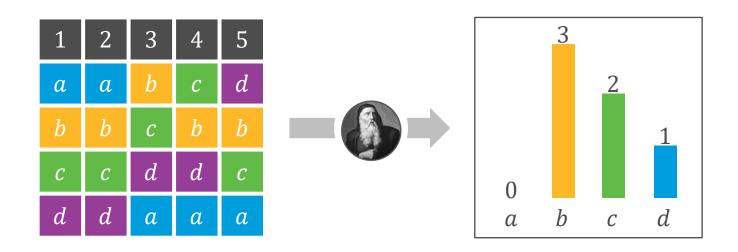
- A Condorcet winner is an alternative that defeats every other alternative in a head-tohead comparison
- A rule is Condorcet consistent if it always selects a Condorcet winner whenever it is presented with a profile that contains one

Poll 1

Which rule is Condorcet consistent?

- Plurality
- Both rules

- Borda Count
- Neither one


Ramon Llull

c. 1232–1315

Monk, missionary, and philosopher; one of the most influential intellectuals of his time. Also remembered for publishing a medieval parenting guide.

LLULL'S RULE

 Each alternative receives one point for each head-to-head comparison it wins (as well as for tied comparisons)

Llull's rule is Condorcet consistent — why?

Charles Lutwidge Dodgson

1832-1898

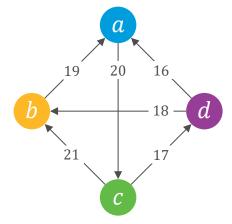
Professor of mathematics at Oxford, pioneer photographer, and beloved author. Also known for not plagiarizing Condorcet's work.

DODGSON'S RULE

- The Dodgson score of an alternative x is the minimum number of swaps between adjacent alternatives needed to make x a Condorcet winner; select an alternative with minimum score
- Dodgson's rule is Condorcet consistent
- Dodgson's rule is NP-hard to compute!

DODGSON'S RULE

What is the Dodgson score of *b*?

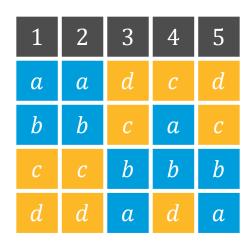

1	2	3	4	5	1	2	3	4	5	
a	a	d	d	d	a	a	d	d	d	
b	b	С	С	С	b	b	С	b	С	
С	С	а	b	b	С	С	a	С	b	
d	d	b	а	a	d	d	b	а	а	- 1
										-
1	2	3	4	5	1	2	3	4	5	
b	a	d	b	d	а	a	d	b	d	
a	b	С	d	С	b	b	С	d	С	
С	С	a	С	b	С	С	a	С	b	
d	d	b	a	a	d	d	b	а	a	

SCHULZE'S RULE

- Let P(x, y) denote the number of voters who prefer x to y
- A path from x to y of strength p is a sequence of alternatives $x = a_1, ..., a_k = y$ such that for all i = 1, ..., k 1, $P(a_i, a_{i+1}) > P(a_{i+1}, a_i)$ and $P(a_i, a_{i+1}) \ge p$
- Let S(x, y) be the strength of the strongest path from x to y (it's 0 if there's no path)
- Exercise: If S(x, y) > S(y, x) and S(y, z) > S(z, y) then S(x, z) > S(z, x)
- Therefore there exists a winning alternative x^* such that $S(x^*, y) \ge S(y, x^*)$ for all y
- Schulze's rule is Condorcet consistent

SCHULZE'S RULE

5 voters	2 voters	3 voters	4 voters	3 voters	3 voters	1 voter	5 voters	4 voters
а	а	а	b	С	С	d	d	d
С	С	d	а	b	d	а	b	С
b	d	С	С	d	b	С	а	b
d	b	b	d	а	а	b	С	a


Pairwise comparisons

	а	b	С	d
а	_	20	20	17
b	19	_	19	17
С	19	21	_	17
d	18	18	18	_

Strength of paths S(x, y)

INDEPENDENCE OF CLONES

A subset of alternatives S is called clones in a given preference profile if no voter ranks any alternative $x \notin S$ between two alternatives in S

a and b are clones

INDEPENDENCE OF CLONES

- A voting rule is independent of clones if when deleting alternatives from a set of clones *S*:
 - If the winner was in *S*, it is still in *S*
 - If the winner was $x \notin S$, it is still x

Poll 2

Which rule is **not** independent of clones?

Borda count

Schulze

IRV

None of the above

AWESOME EXAMPLE

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters	Pl. a
а	b	С	С	d	е	
b	d	d	e	e	С	b
С	С	b	b	С	b	
d	e	а	d	b	d	
e	а	e	а	а	а	IRV d

