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THE MINIMAX THEOREM: REMINDER

• Theorem [von Neumann 1928]: Every 2-
player zero-sum game has a unique value 𝑣𝑣 
such that:
◦ Player 1 can guarantee utility at least 𝑣𝑣
◦ Player 2 can guarantee utility at least −𝑣𝑣

• I claimed that “we will prove the theorem 
from scratch later in the course” — now is 
the time! 



   
   

NO-REGRET LEARNING: MOTIVATION

   
   

  
   

 
 

 

 
 

 

 
 

 

 
 

 

  
   

Day 1: 53 minutes Day 2: 47 minutes

Each morning pick one of 𝑛𝑛 possible routes from 
home to work, then find out how long it took. Is there 
a strategy for picking routes that does almost as well 
as the best fixed route in hindsight?



THE MODEL

• View the interaction as a matrix

• Algorithm picks row, adversary column
• Alg pays cost of (row,column) and gets 

column as feedback
• Assume costs are in [0,1]
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THE MODEL

• Define average regret in 𝑇𝑇 time steps as 
(average per-day cost of alg) − (average 
per-day cost of best fixed row in hindsight)

• No-regret algorithm: regret→ 0 as 𝑇𝑇 → ∞ 
• Not competing with adaptive strategy, just 

the best fixed row



EXAMPLE

1 0

0 1

Poll 1
Consider an alg that alternates between U and D. 
What is its worst-case average regret?
○ Θ(1/𝑇𝑇) ○ Θ(1) ○ Θ(𝑇𝑇) ○ ∞ ?

     
  



EXAMPLE

1 0

0 1

Poll 2
Consider an alg that chooses action that has lower 
cost so far. What is its worst-case average regret?
○ Θ(1/𝑇𝑇) ○ Θ(1/ 𝑇𝑇) ○ Θ(1/ log𝑇𝑇) ○ Θ(1) ?

     
  



EXAMPLE

1 0

0 1

Question

Building on this example, what can we say more 
generally about deterministic algorithms? ?

     
  



USING EXPERT ADVICE

• Want to predict the weather
• Solicit advice from 𝑛𝑛 experts

◦ Expert = someone with an opinion

• Can we do as well as the best in hindsight?

  
   

  
   

  
      

  

Day 1 + − − + +

Day 2 − − + − −

Day 3 + − − − −

   
   



WEIGHTED MAJORITY

• Idea: Experts are penalized every time they 
make a mistake

• Weighted Majority Algorithm:
◦ Start with all experts having weight 1
◦ Predict based on weighted majority vote
◦ Penalize mistakes by cutting weight in half



WEIGHTED MAJORITY: EXAMPLE

  
   

  
   

  
      

  

Weight 1 1 1 1 3 vs. 1
Prediction − + + + + +

  
   

   
   

Weight 0.5 1 1 1 1.5 vs. 2
Prediction + + − − − +

Weight 0.5 1 0.5 0.5

Right, 3

Wrong, 1 Right, 1.5

Wrong, 2



WEIGHTED MAJORITY: ANALYSIS

• 𝑀𝑀 = #mistakes we’ve made so far
• 𝑚𝑚 = #mistakes of best expert so far
• 𝑊𝑊 = total weight (starts at 𝑛𝑛)
• For each mistake, 𝑊𝑊 drops by at least 25%, 

so after 𝑀𝑀 mistakes: 𝑊𝑊 ≤ 𝑛𝑛 3/4 𝑀𝑀

• Weight of best expert is 1/2 𝑚𝑚

• It follows that (1/2)𝑚𝑚≤ 𝑛𝑛(3/4)𝑀𝑀, and 
therefore 𝑀𝑀 ≤ 2.5(𝑚𝑚 + log 𝑛𝑛)



BEYOND WEIGHTED MAJORITY

• Modified Weighted Majority Algorithm:
◦ Start with all experts having weight 1
◦ Predict based on weighted majority vote
◦ Penalize mistakes by removing 𝜖𝜖 fraction of 

weight

Question

Is there an 𝜖𝜖 that would guarantee 𝑀𝑀 ≤ 1 + 𝛿𝛿 𝑚𝑚 
for a small 𝛿𝛿 > 0? ?

     
  



RANDOMIZED WEIGHTED MAJORITY

• Idea: Predict proportionally to weights
• Randomized Weighted Majority Algorithm:

◦ Start with all experts having weight 1
◦ If the total weight of + is 𝑤𝑤+ and the total 

weight of − is 𝑤𝑤−, predict + with probability 
𝑤𝑤+

𝑤𝑤++𝑤𝑤−
 and − with probability 𝑤𝑤−

𝑤𝑤++𝑤𝑤−
 

◦ Penalize mistakes by removing 𝜖𝜖 fraction of 
weight



RANDOMIZED WEIGHTED MAJORITY

Idea: smooth out the worst case

The worst-case is 
∼50-50: now we 
have a 50% chance 
of getting it right

What about 90-10? 
We’re very likely to 
agree with the 
majority



RANDOMIZED WEIGHTED MAJORITY

• Theorem: For suitable 𝜖𝜖, the randomized 
weighted majority algorithm has average 
regret at most 2 𝑇𝑇 ln𝑛𝑛 /𝑇𝑇 → 0

• More generally, Each expert is an action 
with cost in 0,1

• Run Randomized Weighted Majority
◦ Choose expert 𝑖𝑖 with probability 𝑤𝑤𝑖𝑖/𝑊𝑊
◦ Update weights: 𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖(1 − 𝑐𝑐𝑖𝑖𝜖𝜖)

• Same bound applies



THE MINIMAX THEOREM: PROOF

• In a zero-sum game 𝐺𝐺, denote:
◦ 𝑉𝑉𝐶𝐶  is the smallest reward (to row) the column 

player can guarantee if they commit first
◦ 𝑉𝑉𝑅𝑅 is the largest reward (to row) the row player 

can guarantee if they commit first
• Obviously 𝑉𝑉𝐶𝐶 ≥ 𝑉𝑉𝑅𝑅, and the theorem says equality 

holds
• Assume for contradiction that 𝑉𝑉𝐶𝐶 > 𝑉𝑉𝑅𝑅
• Shift and scale matrix so that payoffs to row player 

are in [−1,0], and let 𝑉𝑉𝐶𝐶 = 𝑉𝑉𝑅𝑅 + 𝛿𝛿



• Suppose the game is played repeatedly; in 
each round the row player commits, and the 
column player responds

• Let the row player play RWM, and let the 
column player respond optimally to current 
mixed strategy

• After 𝑇𝑇 steps
◦ ALG ≥ best row in hindsight −2 𝑇𝑇 log𝑛𝑛
◦ ALG ≤ 𝑇𝑇 ⋅ 𝑉𝑉𝑅𝑅

THE MINIMAX THEOREM: PROOF



• Claim: Best row in hindsight ≥ 𝑇𝑇 ⋅ 𝑉𝑉𝐶𝐶
◦ Suppose the column player played 𝑠𝑠𝑡𝑡 in round 𝑡𝑡
◦ Define a mixed strategy 𝑦𝑦 that plays each 𝑠𝑠𝑡𝑡 

with probability 1/𝑇𝑇 (multiplicities possible)
◦ Let 𝑥𝑥 be row’s best response to 𝑦𝑦

◦ 𝑉𝑉𝐶𝐶 ≤ 𝑢𝑢1 𝑥𝑥,𝑦𝑦 = 1
𝑇𝑇
𝑢𝑢1 𝑥𝑥, 𝑠𝑠1 + ⋯+ 1

𝑇𝑇
𝑢𝑢1 𝑥𝑥, 𝑠𝑠𝑇𝑇

◦ 𝑢𝑢1 𝑥𝑥, 𝑠𝑠1 + ⋯+ 𝑢𝑢1 𝑥𝑥, 𝑠𝑠𝑇𝑇 ≤ best row in 
hindsight ∎

• It follows that 𝑇𝑇 ⋅ 𝑉𝑉𝑅𝑅 ≥ 𝑇𝑇 ⋅ 𝑉𝑉𝐶𝐶 − 2 𝑇𝑇 log𝑛𝑛
• 𝛿𝛿𝛿𝛿 ≤ 2 𝑇𝑇 log𝑛𝑛  − contradiction for large 𝑇𝑇 ∎

THE MINIMAX THEOREM: PROOF
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