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THE MINIMAX THEOREM: REMINDER

* Theorem [von Neumann 1928]: Every 2-
player zero-sum game has a unique value v
such that:

o Player 1 can guarantee utility at least v

o Player 2 can guarantee utility at least —v

| claimed that “we will prove the theorem
from scratch later in the course” — now is
the time!



NO-REGRET LEARNING: MOTIVATION

® 2 O
Day 1: 53 minutes Day 2: 47 minutes

Each morning pick one of n possible routes from
home to work, then find out how long it took. Is there
a strategy for picking routes that does almost as well
as the best fixed route in hindsight?



THE MODEL

View the interaction as a matrix

Adversary

Algorithm

Algorithm picks row, adversary column

Alg pays cost of (row,column) and gets
column as feedback

Assume costs are in [0,1]



THE MODEL

* Define average regretin T time steps as
(average per-day cost of alg) — (average
per-day cost of best fixed row in hindsight)

* No-regret algorithm: regret— 0asT — o

* Not competing with adaptive strategy, just
the best fixed row



EXAMPLE

Poll 1

Consider an alg that alternates between U and D.

What is its worst-case average regret?

°0(1/T) o6(1) ©006(T) o




EXAMPLE

Poll 2

Consider an alg that chooses action that has lower
cost so far. What is its worst-case average regret?

°00(1/T) o00(/NT) ©0(1/logT)  ©6(1)




EXAMPLE

1 0
0 1
Question

Building on this example, what can we say more
generally about deterministic algorithms?




USING EXPERT ADVICE

 Want to predict the weather
* Solicit advice from n experts

o Expert = someone with an opinion

2 2 & 8 =
pay 1 [ R -
pay2 [ N -
Day3 [ I I -

* Can we do as well as the best in hindsight?



WEIGHTED MAJORITY

* Idea: Experts are penalized every time they
make a mistake

* Weighted Majority Algorithm:
o Start with all experts having weight 1

o Predict based on weighted majority vote
o Penalize mistakes by cutting weight in half



WEIGHTED MAJORITY: EXAMPLE
E @ @ '@' 41

Weight 3vs. 1
Weight 1.5vs. 2
Weight 0.5 0.5 0.5

Right, 1.5




WEIGHTED MAJORITY: ANALYSIS

M = #mistakes we’'ve made so far
m = #mistakes of best expert so far
W = total weight (starts at n)

For each mistake, W drops by at least 25%,
so after M mistakes: W < n(3/4)M

Weight of best expertis (1/2)™

[t follows that (1/2)™< n(3/4), and
therefore M < 2.5(m + logn)



BEYOND WEIGHTED MAJORITY

* Modified Weighted Majority Algorithm:
o Start with all experts having weight 1
o Predict based on weighted majority vote

o Penalize mistakes by removing € fraction of
weight

Question

[s there an € that would guarantee M < (1 + §)m
forasmall 6 > 0?

[mite Q




RANDOMIZED WEIGHTED MAJORITY

* Idea: Predict proportionally to weights

* Randomized Weighted Majority Algorithm:
o Start with all experts having weight 1
o [f the total weight of + is w, and the total
weight of — is w_, predict + with probability
®+ _ and — with probability

Wy +w_ W +w_

o Penalize mistakes by removing € fraction of
weight




RANDOMIZED WEIGHTED MAJORITY

Idea: smooth out the worst case

The worst-case is What about 90-107
~50-50: now we We're very likely to
have a 50% chance agree with the

of getting it right majority



RANDOMIZED WEIGHTED MAJORITY

Theorem: For suitable €, the randomized
weighted majority algorithm has average

regret at most (2VT Inn)/T - 0

More generally, Each expert is an action
with costin [0,1]

Run Randomized Weighted Majority

o Choose expert i with probability w; /W
o Update weights: w; <« w;(1 — c;€)
Same bound applies



THE MINIMAX THEOREM: PROOF

In a zero-sum game G, denote:

o V- is the smallest reward (to row) the column
player can guarantee if they commit first

o Vp is the largest reward (to row) the row player
can guarantee if they commit first

Obviously V. = I/, and the theorem says equality
holds

Assume for contradiction that V, > 1,

Shift and scale matrix so that payoffs to row player
arein [—1,0],andletV, =V + 6



THE MINIMAX THEOREM: PROOF

* Suppose the game is played repeatedly; in
each round the row player commits, and the
column player responds

* Let the row player play RWM, and let the
column player respond optimally to current
mixed strategy

» After T steps

> ALG = best row in hindsight —2,/T logn
o ALG < T - VR




THE MINIMAX THEOREM: PROOF

* (Claim: Best row in hindsight > T - V.
o Suppose the column player played s; in round ¢

o Define a mixed strategy y that plays each s;
with probability 1/T (multiplicities possible)

o Let x be row’s best response to y
1 1
o Ve Suqy(x,y) = ;ul(x, $1) + -+ ;ul(x, St)

o u(x,s1) + -+ uy(x,sp) <bestrowin
hindsight =

» ItfollowsthatT -Vy =T -V, —2,/Tlogn
¢ 0T < 2\/T10gn — contradiction for large T m
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