

Spring 2025 | Lecture 19
Minimax Theorem via No-Regret Learning
Ariel Procaccia | Harvard University

THE MINIMAX THEOREM: REMINDER

- Theorem [von Neumann 1928]: Every 2-player zero-sum game has a unique value v such that:
 - \circ Player 1 can guarantee utility at least v
 - Player 2 can guarantee utility at least -v
- I claimed that "we will prove the theorem from scratch later in the course" — now is the time!

NO-REGRET LEARNING: MOTIVATION

Day 2: 47 minutes

Each morning pick one of *n* possible routes from home to work, then find out how long it took. Is there a strategy for picking routes that does almost as well as the best fixed route in hindsight?

THE MODEL

View the interaction as a matrix

- Algorithm picks row, adversary column
- Alg pays cost of (row,column) and gets column as feedback
- Assume costs are in [0,1]

THE MODEL

- Define average regret in *T* time steps as
 (average per-day cost of alg) (average per-day cost of best fixed row in hindsight)
- No-regret algorithm: regret $\rightarrow 0$ as $T \rightarrow \infty$
- Not competing with adaptive strategy, just the best fixed row

EXAMPLE

Poll 1

Consider an alg that alternates between U and D. What is its worst-case average regret?

 $\circ \Theta(1) \qquad \circ \Theta(T)$

 0∞

EXAMPLE

Poll 2

Consider an alg that chooses action that has lower cost so far. What is its worst-case average regret?

$$\Theta(1/T)$$
 $\Theta(1/\sqrt{T})$ $\Theta(1/\log T)$

$$\circ \Theta(1)$$

EXAMPLE

Question

Building on this example, what can we say more generally about deterministic algorithms?

USING EXPERT ADVICE

- Want to predict the weather
- Solicit advice from n experts
 - Expert = someone with an opinion

Can we do as well as the best in hindsight?

WEIGHTED MAJORITY

- Idea: Experts are penalized every time they make a mistake
- Weighted Majority Algorithm:
 - Start with all experts having weight 1
 - Predict based on weighted majority vote
 - Penalize mistakes by cutting weight in half

WEIGHTED MAJORITY: EXAMPLE

WEIGHTED MAJORITY: ANALYSIS

- M =#mistakes we've made so far
- m =#mistakes of best expert so far
- W = total weight (starts at n)
- For each mistake, W drops by at least 25%, so after M mistakes: $W \le n(3/4)^M$
- Weight of best expert is $(1/2)^m$
- It follows that $(1/2)^m \le n(3/4)^M$, and therefore $M \le 2.5(m + \log n)$

BEYOND WEIGHTED MAJORITY

- Modified Weighted Majority Algorithm:
 - Start with all experts having weight 1
 - Predict based on weighted majority vote
 - \circ Penalize mistakes by removing ϵ fraction of weight

Question

Is there an ϵ that would guarantee $M \leq (1 + \delta)m$ for a small $\delta > 0$?

RANDOMIZED WEIGHTED MAJORITY

- Idea: Predict proportionally to weights
- Randomized Weighted Majority Algorithm:
 - Start with all experts having weight 1
 - If the total weight of + is w_+ and the total weight of is w_- , predict + with probability $\frac{w_+}{w_+ + w_-}$ and with probability $\frac{w_-}{w_+ + w_-}$
 - \circ Penalize mistakes by removing ϵ fraction of weight

RANDOMIZED WEIGHTED MAJORITY

Idea: smooth out the worst case

The worst-case is ~50-50: now we have a 50% chance of getting it right

What about 90-10? We're very likely to agree with the majority

RANDOMIZED WEIGHTED MAJORITY

- Theorem: For suitable ϵ , the randomized weighted majority algorithm has average regret at most $(2\sqrt{T \ln n})/T \to 0$
- More generally, Each expert is an action with cost in [0,1]
- Run Randomized Weighted Majority
 - Choose expert i with probability w_i/W
 - Update weights: $w_i \leftarrow w_i(1 c_i \epsilon)$
- Same bound applies

THE MINIMAX THEOREM: PROOF

- In a zero-sum game *G*, denote:
 - \circ V_C is the smallest reward (to row) the column player can guarantee if they commit first
 - \circ V_R is the largest reward (to row) the row player can guarantee if they commit first
- Obviously $V_C \ge V_R$, and the theorem says equality holds
- Assume for contradiction that $V_C > V_R$
- Shift and scale matrix so that payoffs to row player are in [-1,0], and let $V_C = V_R + \delta$

THE MINIMAX THEOREM: PROOF

- Suppose the game is played repeatedly; in each round the row player commits, and the column player responds
- Let the row player play RWM, and let the column player respond optimally to current mixed strategy
- After *T* steps
 - ∘ ALG ≥ best row in hindsight $-2\sqrt{T} \log n$
 - \circ ALG $\leq T \cdot V_R$

THE MINIMAX THEOREM: PROOF

- Claim: Best row in hindsight $\geq T \cdot V_C$
 - \circ Suppose the column player played s_t in round t
 - Define a mixed strategy y that plays each s_t with probability 1/T (multiplicities possible)
 - Let x be row's best response to y

$$V_C \le u_1(x,y) = \frac{1}{T}u_1(x,s_1) + \dots + \frac{1}{T}u_1(x,s_T)$$

- ∘ $u_1(x, s_1) + \dots + u_1(x, s_T) \le \text{best row in}$ hindsight ■
- It follows that $T \cdot V_R \ge T \cdot V_C 2\sqrt{T \log n}$
- $\delta T \le 2\sqrt{T\log n}$ contradiction for large T