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MOTIVATION

Firm is marketing a new product
Collect data on the social network

Choose set S of early adopters and market to
them directly

Customers in S generate a cascade of
adoptions

Question: How to choose S?



INFLUENCE FUNCTIONS

* Assume: finite directed graph, progressive
process

* Fixing a cascade model, define influence
function

* f(S) = expected #active nodes at the end of
the process starting with seed nodes S

* Maximize f(S) over sets S of size k



SUBMODULARITY

Try to identify broad subclasses where good
approximation is possible

f issubmodularifforX € Y,z &Y,
fXuiz) —fX) = f(Y Uiz} — f(Y)
f is monotoneifforX € Y, f(X) < f(Y)

Theorem: f monotone and submodular, $* optimal
k-element subset, S obtained by greedily adding k
elements that maximize marginal increase; then

1
F(S) 2 (1 - E)f(S*)



EXAMPLE: COVERAGE FUNCTIONS
« LetU, Ay, ..., A, c U,and f:2I" - R*

* The coverage function is f(S) = |U;eq 4;]
e This function is monotone submodular

Ay

N
S

f12yu4d) - F({1,2}) f({1,2,3} U 4} - f({1,2,3})



EXAMPLE: COVERAGE FUNCTIONS

LetU, A4, ...,A, c U,and f: 2" - R*
* The coverage function is f(S) = |U;eq 4;]
e This function is monotone submodular

* Consider two more functions:
° fl(S) = l1es - |UiESAi|
o f2(S) = lies - |A1] + | Ujes 4il

Poll 1

Which function is monotone submodular? ?
2
A

o Only f; o Both functions
o Only f, o Neither one




INDEPENDENT CASCADE MODEL

Assume V(i,j) € E, w;; € [0,1]
For convenience, for (i,j) € E,letw;; =0

When 3(i,j) € E s.t. i is active and j is not, i
has one chance to activate j with prob. w;;

Theorem: Under the independent cascade
model:

o Influence maximization is NP-hard
o The influence function f is submodular



B e L

SET COVER: subsets Sy, ..., S, of /() % @ )
U= {ul» ey ut}; cover of size k? @ ___________

Bipartite graph: u4, ..., u; onone . s} @
side, 54, ..., S, onthe other 7% S3

=~ -

If u; € §; then there is an edge
(Sj, u;) with weight 1
Min SC of size k = t + k active

Min SC of size > k = less than
t + k active =




PROOF OF SUBMODULARITY

 Lemma:lIf f3, ..., f,- are submodular functions,
c1, ..., ¢ = 0, then
f = Yi_;cif; is asubmodular function

* Proof:LetX €Y andz €Y, then

fFXUEZD-fX) - (fru{zh) —f(n)) =
Glfixu{z}) — fi(X) — (fi(v u{z}) — f;(Y)]

]
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PROOF OF SUBMODULARITY

Key idea: for each (i,j) € E we flip a coin of
bias w;; in advance

Let @ denote a particular one of the 2/%!
possible coin flip combinations

f,(S) = activated players with S as seeds
and a coin flips

i € f,(S) iff i is reachable from S via live
edges



PROOF OF SUBMODULARITY

* f,is submodular: it's like a
coverage function where each
seed node is associated with
all reachable nodes

* f(S) = Lo Prla] - fo(S), that
is, f is a nonnegative
weighted sum of submodular
functions

* By the lemma, f is
submodular =



LINEAR THRESHOLD MODEL

* AssumeVj €N, };w;; <1

* Eachj € N has threshold 6; € [0,1] chosen
uniformly at random
* j becomes active if

Z Wij 29]

activei



LINEAR THRESHOLD MODEL

Poll 2

What is f(S)? ?
o 2/3 o 8/3 O

o 5/2 o 13/4 i

Poll 3

Given that j is inactive,
probability it becomes
active after i does?

o 1/3 o 2/3
o 1/2 o1

N =



LINEAR THRESHOLD MODEL

e Theorem: Under the linear threshold model:
o Influence maximization is NP-hard
o The influence function f is submodular

 Difficulty: fixing the coin flips «a, f, is not
submodular




PROOF OF SUBMODULARITY

* Each j chooses at most one of its
incoming edges at random; (i, j)
selected with prob. w;;, and none with
prob. 1 — >, w;;

* [f we can show that these choices of
live edges induce the same influence
function as the linear threshold model,
then the theorem follows from the
same arguments as before



PROOF OF SUBMODULARITY

* We sketch the equivalence of the two models
* Linear threshold:

o A; = active players at end of iteration t

2i i
o Prlj € Apy | ] € A,] = TS0

1_ZiEAt_1 Wij

* Live edges:

o At every times step, determine whether j's live
edge comes from current active set

o If not, the source of the live edge remains
unknown, subject to being outside the active set

o Same probability as before =



APPLICATIONS

M|

The Diffusion of Microfinance

Abhijit Banerjee,” Arun G. Chandrasekhar,* Esther Duflo,” Matthew 0. Jackson®

Introduction: How do the network positions of the first individuals in a society to receive informa-
tion about a new product affect its eventual diffusion? To answer this question, we develop a model of
information ditfusion through a social network that discriminates between information passing (indi-
viduals must be aware of the product before they can adopt it and they can learn from their friends)
and endorsement the decisions of informed individuals to adopt the product might be influenced by
i ands ducr). W gply 1 o ¥ of micrfranc s, n 4 g brs e s
We then propose two

il are inthei social network it ragad o spreainginormaton: te cetralty f the ﬁrs\-
informed individuals in a village helps significantly in predicting eventual adoption.

Methos: ix months befor a micofinance insttuion enered 43 ilages i India and began offer
ing loans to villagers,

avwide range of ntractions. The mv(mhnznmmsﬂlunnn began bymvmng ‘Iiadels leg. tea(hels

hopkeepers,

mation about the loans. Using the otk data, the locations in the network of these Tt normed
villagers (or injection points), and data regarding the villagers” subsequent participation, we estimate
the parameters of our diffusion model using the method of simulated moments. The parameters of
the model are validated by showing that the mode! correctly predicts the evolution of participation in
each village over time. The model yields a new measure of the effectiveness of any given node as an
injection point, which we call communication centrality. Finally, we develop an easily computed proxy
for communication centrality, which we call diffusion centraliy.

Results: We find that a microfinance participant is seven times as likely to inform anather house-
hold as a nonparticipant; nonetheless, information transmitted by nonparticipants is important and
accounts for about one-third of the eventual informedness and participation in the village because
nonparticipants are much more numerous. Once information passing is accounted for, an informed
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Diffusion of i i icipation. (

household's decision to participate is nat sigrificantly dependent on how many of ifs
participated. Communication centrality, when applied to the set of first-informed individuals in a
village, substantially outperforms other standard network measures of centrality in pr
finance participation in this context. Finally, the simpler proxy measure—diffusion centrality—is
strongly and inherits s pr prop:

ing micro-

Dls(nsslnn Our results suggest that a model of diffusion can distinguish information passing
effects, and that the nature of may be important in
mmmng the ideal places to inject information.

Information is passed on by leaders; leadership
participation affects probability of information sharing

Lett)
Firstinformed households have decided whether to
particpate and stochastially pass on information to

their neighbors. (Right) Particiption may affect the
probability of passing information. Newly informed
nodes make their decisions, possibly being influenced
by the decisions of their neighbors. After newly
informed nodes make thei participation decisions, all
informed nodes engage in another round of stochastic
communication.

Al informed nodes pass on information further; the
probability of information sharing is, again, based on participation
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Abstract

This paper reports on results obtained by deplaying
HEALER and DOSIM (two Al agents for social
influence maximization) in the real-world, which
assist service providers in maximizing HIV aware-
ness in real-world homeless-youth social networks.
These agents recommend key “seed” nodes in so-
cial networks, ie. homeless youth who would
maximize HIV awareness in their real-world social
network. While prior research on these agents pub-
lished promising simulation results from the lab,
the usability of these Al agents in the real-world
was unknown. This paper presents results from
three real-world pilot studies involving 173 home-
less youth across two different homeless shelters
in Los Angeles. The results from these pilot stud-
ies illustrate that HEALER and DOSIM outperform
the current modus operandi of service providers by
~160% in terms of information spread about HIV
among homeless youth.

1 Introduction

The nearly two million homeless youth in the United States
[Toro et al., 2007] are at high risk of contracting Human
Immunodeficiency Virus (HIV) [Pfeifer and Oliver, 1997]
In fact, homeless youth are twenty times more likely to be
HIV positive than stably housed youth, due to high-risk he-
haviors that they engage in (such as unprotected sex, ex-
change sex, sharing drug needles, etc.) [CDC, 2013; Coun-
cil, 2012]. Given the important role that peers play in these
high-risk behaviors of homeless youth [Rice er al., 2012a;
Green et al., 20131, it has been suggested that peer leader
based interventions for HIV prevention be developed for
these youth [Amold and Rotheram-Borus, 2009; Rice ef al..
2012a; Green et al., 20131,

As a result, many homeless youth service providers (hence-
forth just “service providers™) conduct peer-leader based so-
cial network interventions [Rice, 2010], where a select group
of homeless youth are trained as peer leaders. This peer-led

" Amulya Yadav (amulyaya@usc edu) is the contact author

approach is particularly desirable because service providers
have limited resources and homeless youth tend to distrust
adults. The training program of these peer leaders includes
detailed information about how HIV spreads and what one
can do to prevent infection. The peer leaders are also taught
effective ways of communicating this information o their
peers [Rice er al., 2012b].

Because of their limited financial and human resources,
service providers can only train a small number of these youth
and not the entire population. Thus. the selected peer lead-
ers in these interventions are tasked with spreading messages
about HIV prevention to their peers in their social circles,
thereby encouraging them to adopt safer practices. Using
these interventions, service providers aim to leverage social
network effects to spread information about HIV, and induce
behavior change (increased HIV testing) among people in the
homeless youth social network.

In fact, there are further constraints that service providers
face - behavioral struggles of homeless youth means that ser-
vice providers can only train 3-4 peer leaders in every inter-
vention. This leads us (o do sequential training; where groups.
of 3-4 homeless youth are called one afier another for train-
ing. They are trained as peer leaders in the intervention, and
are asked information about friendships that they observe in
the real-world social network. This newer information about
the social network is then used to improve the selection of
the peer leaders for the next intervention. As a result, the
peer leaders for these limited interventions need to be cho-
sen strategically so that awareness spread about HIV is max-
imized in the social network of homeless youth.

Previous work proposed HEALER [Yadav er al.. 2016]
and DOSIM [Wilder er al., 20171, two agents which assist
service providers in optimizing their intervention strategies.
These agents recommend “good™ intervention attendees, i.e.,
homeless youth who maximize HIV awareness in the real-
world social network of youth. In essence, both HEALER
and DOSIM reason strategically about the multiagent system
of home.les; youth to select a sequence of 3-4 youth at a time
to HIV U while earlier re-
search [Yadav er al., 2016; Wilder ef al., 20171 published
promising simulation results from the lab, neither of these
agent based systems have ever been tested in the real world.
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