

Spring 2025 | Lecture 17
Cascade Models
Ariel Procaccia | Harvard University

MOTIVATION

- Spread of ideas and new behaviors through a population
- Examples:
 - Political movements
 - Adoption of technological innovations
 - Success of new product
- Process starts with early adopters and spreads through the social network

COORDINATION GAMES

- Undirected, connected graph G = (V, E)
- $V = \{1, ..., n\}$ is the set of players
- Each $i \in V$ chooses an action $a_i \in \{0,1\}$, and $a = (a_1, ..., a_n)$ is the action profile
- Player i has neighborhood N_i and degree $d_i = |N_i|$
- $n_{i,b}(\mathbf{a}_{-i})$ denotes the number of players in N_i playing action b
- For $q \in [0,1]$, the utility of player i is

$$u_i(\mathbf{a}) = \begin{cases} (1 - q) \cdot n_{i,1} (\mathbf{a}_{-i}), & a_i = 1 \\ q \cdot n_{i,0} (\mathbf{a}_{-i}), & a_i = 0 \end{cases}$$

COORDINATION GAMES

- Let us first consider simultaneous-move coordination games
- The best response of player i is 1 if and only if at least a q-fraction of N_i play 1:

$$0 \le (1 - q)n_{i,1}(\mathbf{a}_{-i}) - qn_{i,0}(\mathbf{a}_{-i})$$
$$= n_{i,1}(\mathbf{a}_{-i}) - q \cdot d_i$$

Poll 1

How many pure Nash equilibria are guaranteed to exist in a coordination game?

COORDINATION GAMES: EXAMPLE

Nash equilibrium for q = 1/2

COHESIVENESS

• The cohesiveness of a set $L \subseteq V$ in G is

$$\operatorname{coh}_{G}(L) = \min_{i \in L} \left(\frac{|N_{i} \cap L|}{|N_{i}|} \right)$$

• We adopt the convention that $coh_G(\emptyset) = 1$

COHESIVENESS

• Theorem: Action profile a is a pure-strategy Nash equilibrium if and only if the sets $X_0 = \{i \in V : a_i = 0\}$ and $X_1 = \{i \in V : a_i = 1\}$ satisfy $\operatorname{coh}_G(X_0) \geq 1 - q$ and $\operatorname{coh}_G(X_1) \geq q$

• Proof:

- ∘ The players in X_1 play a best response if and only if for each of them, the fraction of neighbors playing 1 is at least q, which is equivalent to $|N_i \cap X_1|/|N_i| \ge q$
- A symmetric argument holds for $X_0 \blacksquare$

A CASCADE MODEL

- A set of seeds initially adopt 1, others play 0
- The process is progressive, in the sense that agents only switch from 0 to 1
- We say that a player playing 1 is active and a player switching from 0 to 1 is activated
- In each round, each inactive player with at least a *q*-fraction of active neighbors is activated

CASCADE MODEL: EXAMPLE

$$q = 1/3$$

CONTAGION

- A set of seeds is contagious if all vertices become activated
- Theorem: Seed set S is contagious if and only if $\operatorname{coh}_G(L) \leq 1 q$ for every $L \subseteq V \setminus S$
- Proof:
 - ∘ Suppose $\operatorname{coh}_G(L) \le 1 q$ for every $L \subseteq V \setminus S$, then at any point in the process the set of inactive players $X_0 \subseteq V \setminus S$ has a player with at most a (1 q) fraction of inactive neighbors, so the process will continue
 - ∘ Suppose there is $L \subseteq V \setminus S$ such that $\operatorname{coh}_G(L) > 1 q$, then no player in L will be the first to be activated ■

CONTAGION: EXAMPLE

With this *S*, contagion occurs iff $q \le 1/3$

INFINITE GRAPHS

- Now assume V is countably infinite and each d_i is bounded
- Easier to be contagious when q is small
- Contagion threshold of $G = \max q$ s.t. \exists finite contagious set

INFINITE GRAPHS: EXAMPLE

Poll 2

What is the contagion threshold of *G*?

 \circ 0

0 1/3

0 1/4

0 1/2

INFINITE GRAPHS: EXAMPLE

Poll 3

What is the contagion threshold of *G*?

0

0 1/3

0 1/4

0 1/2

CONTAGION THRESHOLD

- We Saw a graph with contagion threshold
 1/2
- Does there exist a graph with contagion threshold > 1/2?
- Theorem: The contagion threshold of any graph G is at most 1/2

PROOF OF THEOREM

- Let q > 1/2, finite S
- Let S_j be the active nodes at round j
- $\delta(X)$ = set of edges with exactly one end in X
- If $S_{j-1} \neq S_j$ then $|\delta(S_j)| < |\delta(S_{j-1})|$
 - ∘ For each $i \in S_j \setminus S_{j-1}$, its edges into S_{j-1} are in $\delta(S_{j-1}) \setminus \delta(S_j)$, and its edges into $V \setminus S_j$ are in $\delta(S_j) \setminus \delta(S_{j-1})$
 - More of the former than the latter because i activated and q > 1/2
- $\delta(S)$ is finite and $\delta(S_i) \ge 0$ for all j

