

Spring 2025 | Lecture 14

Kidney Exchange

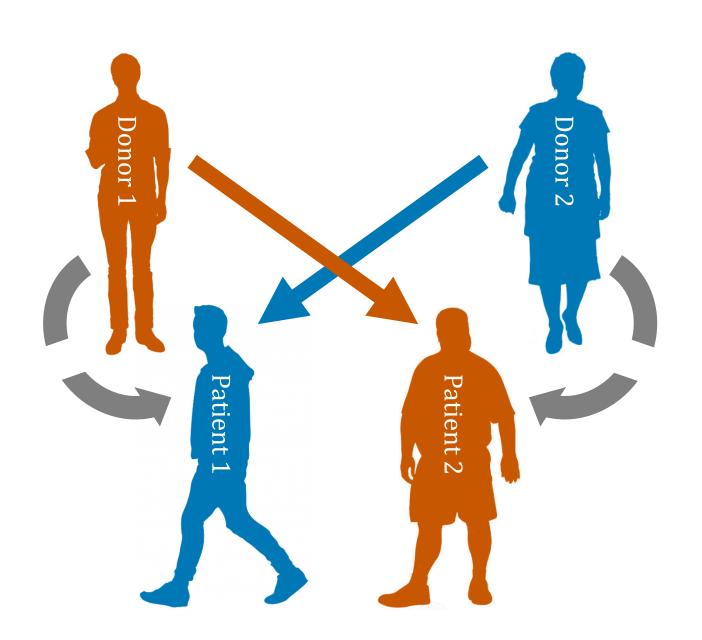
Ariel Procaccia | Harvard University

KIDNEY EXCHANGE

- Kidney failure is a serious medical problem
- The preferred treatment is kidney transplant, from a deceased or live donor
- Must be blood-type and tissue-type compatible
- On March 25, 2025, there were 90,489 patients waiting for kidney transplant in the United States

https://optn.transplant.hrsa.gov/data

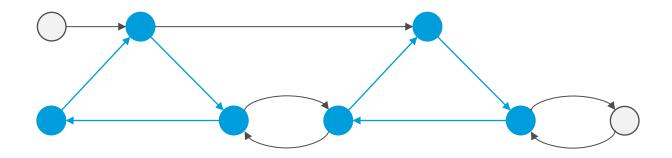
KIDNEY EXCHANGE



KIDNEY EXCHANGE GRAPHS

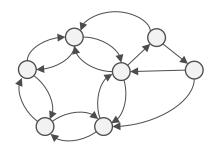
- More generally, we could have exchanges along longer cycles, although length 3 is usually the practical limit
- Model as a directed graph G = (V, E) where V is a set of donor-patient pairs and there is an edge from u to v if the donor of u is compatible with the patient of v

CYCLE COVER

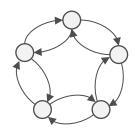


- CYCLE-COVER problem: Given a directed graph G and $L \in \mathbb{N}$, find a collection of disjoint cycles of length $\leq L$ in G that maximizes the number of covered vertices
- Theorem: For any constant $L \ge 3$, CYCLE-COVER is NP-complete

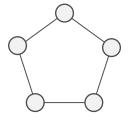
CYCLE-COVER WITH L=2



Given a graph with cycles of any length



Focus on cycles of length 2



Now it's a max matching problem!

KIDNEY EXCHANGE AS IP

- For $L \ge 3$, CYCLE-COVER is solved in practice via integer programming
- Variables: For each cycle c of length $\ell_c \le L$, variable $x_c \in \{0,1\}$, $x_c = 1$ iff cycle c is included in the cover

$$\max \sum_{c} x_{c} \ell_{c}$$
s.t. $\forall v \in V, \sum_{c:v \in c} x_{c} \leq 1$

$$\forall c, x_{c} \in \{0,1\}$$

APPLICATION: UNOS

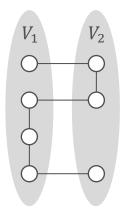
INCENTIVES

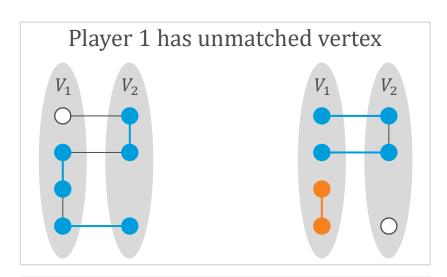
- In the past kidney exchanges were carried out by individual hospitals
- Today there are nationally organized exchanges; participating hospitals have little other interaction
- It was observed that hospitals match easy-tomatch pairs internally, and enroll only hard-tomatch pairs into larger exchanges
- Goal: incentivize hospitals to enroll all their pairs

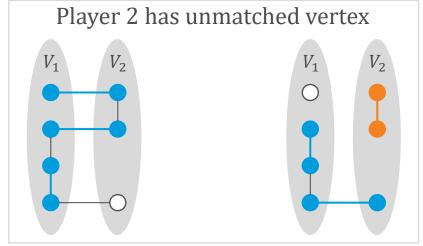
THE STRATEGIC MODEL

- Undirected graph (only pairwise matches!)
- Each player controls subset of vertices
- Mechanism receives a graph and returns a matching
- Utility of player = # its matched vertices
- Target: # matched vertices (util. social welfare)
- Strategy: subset of revealed vertices (but edges are public knowledge)
- Mechanism is strategyproof (SP) if it is a dominant strategy to reveal all vertices

OPT IS MANIPULABLE

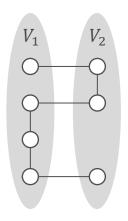


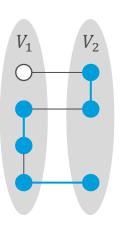


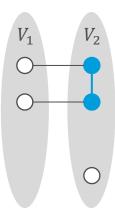


SP MECHANISM: TAKE 1

- Assume two players
- The MATCH $\{\{1\},\{2\}\}\}$ mechanism:
 - Consider matchings that maximize the number of "internal edges"
 - Among these return a matching with max cardinality





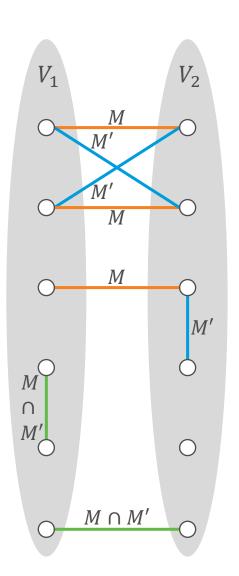


GUARANTEES

- MATCH_{{{1},{2}}} gives a 1/2-approximation
 - Cannot add more edges to matching
 - For each edge in optimal matching, one of the two vertices is in mechanism's matching
- Theorem (special case): $MATCH_{\{\{1\},\{2\}\}}$ is strategyproof for two players

PROOF OF THEOREM

- M = matching when player 1 is honest, M' = matching when player 1 hides vertices
- $M\Delta M'$ consists of paths and cycles, each consisting of alternating M, M' edges
- In a cycle, M and M' both match all vertices, so player 1 is indifferent
- We will show that for every path, player 1 has at least as many matched vertices under M as M'

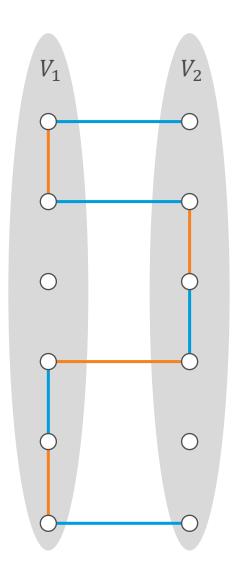


PROOF OF THEOREM

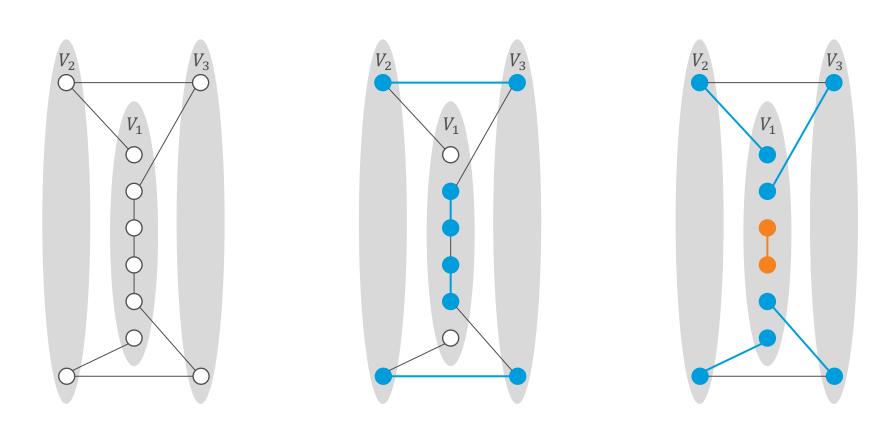
- Consider a path in $M\Delta M'$, denote its edges in M by P and its edges in M' by P'
- For $i, j \in \{1, 2\}$, $P_{ij} = \{(u, v) \in P : u \in V_i, v \in V_j\}$ $P'_{ij} = \{(u, v) \in P' : u \in V_i, v \in V_j\}$
- $|P_{11}| \ge |P'_{11}|$, suppose $|P_{11}| = |P'_{11}|$
- It holds that $|P_{22}| = |P'_{22}|$
- *M* is max cardinality $\Rightarrow |P_{12}| \ge |P'_{12}|$
- $U_1(P) = 2|P_{11}| + |P_{12}| \ge 2|P'_{11}| + |P'_{12}| = U_1(P')$

PROOF OF THEOREM

- Suppose $|P_{11}| > |P'_{11}|$
- $|P_{12}| \ge |P'_{12}| 2$
 - \circ Every subpath within V_2 is of even length
 - We can pair the edges of P_{12} and P'_{12} , except maybe the first and the last
- $U_1(P) = 2|P_{11}| + |P_{12}| \ge 2(|P'_{11}| + 1) + |P'_{12}| 2 = 2|P'_{11}| + |P'_{12}| = U_1(P')$



THE CASE OF 3 PLAYERS



Maximizing internal edges is no longer SP

SP MECHANISM: TAKE 2

- Let $\Pi = (\Pi_1, \Pi_2)$ be a bipartition of the players
- The MATCH $_{\Pi}$ mechanism:
 - Consider matchings that maximize the number of "internal edges" and do not have any edges between different players on the same side of the partition
 - Among these return a matching with max cardinality

EUREKA?

- Theorem: $MATCH_{\Pi}$ is strategyproof for any number of players and any partition Π
- Recall: for n=2, MATCH $_{\{\{1\},\{2\}\}}$ guarantees a 1/2-approximation

Poll

Approximation guarantees given by $MATCH_{\Pi}$ for n = 3 and $\Pi = \{\{1\}, \{2,3\}\}$?

1/2-approx

o 1/4-approx

1/3-approx

o Less than 1/4

MIX AND MATCH

- The MIX-AND-MATCH mechanism:
 - \circ Mix: Choose a random partition Π
 - Match: Execute MATCH_Π
- Theorem: MIX-AND-MATCH is strategyproof and guarantees a 1/2-approximation