

Spring 2025 | Lecture 13
Online Matching Algorithms
Ariel Procaccia | Harvard University

- You are on a ski vacation; you can buy skis for \$B or rent for \$1/day
- You're very spoiled: You'll go home when it's not sunny
- Rent or buy when B = 5?

- Now assume you don't know in advance how many days of sunshine there are
- Every day of sunshine you need to decide whether to rent or buy
- Algorithm: Rent for B days, then buy

- The competitive ratio of an online algorithm defined identically to approximation ratio
- The difference is that the online algorithm is competing with the offline optimum — the difficulty stems from lack of information

Poll 1

For $B \ge 8$, what is the competitive ratio of the "rent for B days, then buy" algorithm?

0 2

03

 $\circ B/2$

 $\circ B$

- Renting for B-1 days is (2B-1)/Bcompetitive
- Theorem: No online ski rental algorithm has a lower competitive ratio
- Proof:
 - Algorithm is defined by renting for K days and buying on day K+1
 - Adversary makes it rain on day K + 2
 - $\circ K \ge B$: OPT(I) = B, $ALG(I) = K + B \ge 2B$
 - ∘ $K \le B 2$: OPT(I) = K + 1, $ALG(I) = K + B \ge 2K + 2$ ■

DISPLAY ADVERTISING

- Largest matching problem in the world
- Bipartite graph with advertisers and impressions
- Advertisers specify which impressions are acceptable — this defines the edges
- Impressions arrive online

THE (SIMPLEST) MODEL

- Bipartite graph G = (U, V, E) with |U| = n
- *U* is known "offline," the vertices of *V* arrive online (with their incident edges)
- Online vertices can only be matched when they arrive
- Objective: maximize size of matching
- ALG has competitive ratio $\alpha \leq 1$ if for every graph G and every input order π of V,

$$\frac{ALG(G,\pi)}{OPT(G)} \ge \alpha$$

EXAMPLE

Graph G, order (a, b, c)

Graph G, order (b, c, a)

A GREEDY ALGORITHM

 Algorithm GREEDY: match to an arbitrary unmatched neighbor (if one exists)

Competitive ratio of GREEDY?

 \circ 1/n

 \circ 1/log n

 $\circ 1/\sqrt{n}$

0 1/2

UPPER BOUND

Observation: The competitive ratio of any deterministic algorithm is at most 1/2

TAKE 2: ALGORITHM RANDOM

- Obvious idea: randomness
- Algorithm RANDOM: Match to an unmatched neighbor uniformly at random
- Achieves ¾ on previous example

Poll 3

Competitive ratio of RANDOM on current graph?

~7/8

• ~5/8

• ~6/8

~4/8

TAKE 3: ALGORITHM RANKING

- Algorithm RANKING:
 - Choose a random permutation $\pi: U \to [n]$
 - Match each vertex to its unmatched neighbor u with the lowest $\pi(u)$
- Looks like this is doing better than RANDOM on previous example!
- Theorem: The competitive ratio of Ranking is $1 1/e \approx 0.63$, and this is the best possible

WEIGHTED MATCHING

- Let's augment the problem with the following features:
 - \circ Each offline vertex u has a budget B_u
 - Each edge has a weight ("bid") and the goal is to maximize the weight of the matching
- Algorithm GREEDY' matches highest weight edge subject to budget
- Theorem: The competitive ratio of GREEDY' is 1/2

WEIGHTED MATCHING

- Let's make the realistic assumptions that for all $v, w_{uv} \ll B_u$
- The competitive ratio of Greedy' is still 1/2

WEIGHTED MATCHING

 We need to take the remaining budget into account, but just allocating based on remaining budget is obviously a bad idea

THE MSVV ALGORITHM

- Denote by x_u the fraction of u's budget that has been spent
- Define $f(x) = 1 e^{x-1}$
- In the MSVV Algorithm, each vertex v is matched with u that maximizes $w_{uv} \cdot f(x_u)$
- Theorem: MSVV has a competitive ratio that approaches 1 1/e as the budgets grows, and this is the best possible even among randomized algorithms

PRACTICAL CONSIDERATIONS

- The MSVV algorithm extends to advertisers arriving at different times, bidders paying only for clicks, and winning bidders paying the secondhighest bid
- Significant impact on practice:

"The core problem of budget management remains important, and the core idea [of spending budget smoothly] remains impactful"

- Aranyak Mehta (Google Research), July 2024