

Spring 2025 | Lecture 12 Indivisible Goods Ariel Procaccia | Harvard University

PROVABLY FAIR SOLUTIONS.

Share Rent

Split Fare

Assign Credit

Divide Goods

Distribute Tasks

Suggest an App

INDIVISIBLE GOODS

- Set G of m goods
- Each good is indivisible
- Players $N = \{1, ..., n\}$ have valuations V_i for bundles of goods
- Valuations are additive if for all $S \subseteq G$ and $i \in N, V_i(S) = \sum_{g \in S} V_i(g)$
- Assume additivity unless noted otherwise
- An allocation is a partition of the goods, denoted $A = (A_1, ..., A_n)$
- Envy-freeness and proportionality are infeasible!

MAXIMIN SHARE GUARANTEE

MAXIMIN SHARE GUARANTEE

MAXIMIN SHARE GUARANTEE

- Maximin share (MMS) guarantee of player i: $\max_{X_1,...,X_n} \min_{j} V_i(X_j)$
- An MMS allocation is such that $V_i(A_i)$ is at least i's MMS guarantee for all $i \in N$
- For n = 2 an MMS allocation always exists
- Theorem: $\forall n \geq 3$ there exist additive valuation functions that do not admit an MMS allocation

COUNTEREXAMPLE FOR n = 3

3 ways of dividing these numbers into 3 subsets of 4 numbers such that each subset adds up to 55

COUNTEREXAMPLE FOR n = 3

$$\frac{1}{1} \times 10^6 + \frac{1}{1}$$

1/	25	12	1			
2	22	3	28	X	10^3	+
11	0	21	23			

3	-1	-1	-1				
0	0	0	0				
0	0	0	0				
Player 1							

	-	0	0
-1	0	0	0
-1	0	0	0

APPROXIMATE ENVY-FREENESS

- Assume general monotonic valuations, i.e., for all $S \subseteq T \subseteq G, V_i(S) \leq V_i(T)$
- An allocation $A_1, ..., A_n$ is envy free up to one good (EF1) if and only if $\forall i, j \in N, \exists g \in A_j \text{ s.t. } v_i(A_i) \geq v_i(A_j \setminus \{g\})$
- Theorem: An EF1 allocation exists and can be found in polynomial time

PROOF OF THEOREM

- A partial allocation is an allocation of a subset of the goods
- Given a partial allocation A, we have an edge (i, j) in its envy graph if i envies j
- Lemma: An EF1 partial allocation A can be transformed in polynomial time into an EF1 partial allocation B of the same goods with an acyclic envy graph

PROOF OF LEMMA

- If graph has a cycle C, shift allocations along C to obtain A'; clearly EF1 is maintained
- #edges in envy graph of A' decreased:
 - Same edges between $N \setminus C$
 - \circ Edges from $N \setminus C$ to C shifted
 - Edges from C to N \ C can only decrease
 - Edges inside C decreased
- Iteratively remove cycles ■

PROOF OF THEOREM

- Maintain EF1 and acyclic envy graph
- In round 1, allocate good g_1 to arbitrary player; envy graph is acyclic and EF1
- $g_1, ..., g_{k-1}$ are allocated in acyclic and EF1 allocation \boldsymbol{A}
- Derive **B** by allocating g_k to source i
- $V_j(B_j) = V_j(A_j) \ge V_j(A_i) = V_j(B_i \setminus \{g_k\})$
- Use lemma to eliminate cycles

ROUND ROBIN

- Let us return to additive valuations
- Now proving the existence of an EF1 allocation is trivial
- A round-robin allocation is EF1:

EFFICIENCY AND FAIRNESS

• An allocation A is Pareto efficient if there is no allocation A' such that $V_i(A_i') \ge V_i(A_i)$ for all $i \in N$, and $V_j(A_j') > V_j(A_j)$ for some $j \in N$

Poll

Which of the following rules is Pareto efficient?

- Round Robin
- Max utilitarian social welfare
 Neither

Both

MAXIMUM NASH WELFARE

The Nash welfare of an allocation A is the product of values

$$NW(A) = \prod_{i \in N} V_i(A_i)$$

- The maximum Nash welfare (MNW) solution chooses an allocation that maximizes the Nash welfare
- Theorem: Assuming additive valuations, the MNW solution is EF1 and Pareto efficient

TRACTABILITY OF MNW

[Caragiannis et al., 2016]

INTERFACE

AN OPEN PROBLEM

- An allocation $A_1, ..., A_n$ is envy free up to any good (EFX) if and only if $\forall i, j \in N, \forall g \in A_j, v_i(A_i) \geq v_i(A_j \setminus \{g\})$
- Strictly stronger than EF1, strictly weaker than EF
- An EFX allocation exists for two players with monotonic valuations (easy) and for three players with additive valuations (very hard)
- Existence is an open problem for $n \ge 4$ players with additive valuations