

# Spring 2025 | Lecture 11 Rent Division Ariel Procaccia | Harvard University

## PROVABLY FAIR SOLUTIONS.



Share Rent



Split Fare



Assign Credit



Divide Goods



Distribute Tasks



Suggest an App

# ONCE UPON A TIME IN JERUSALEM









## SPERNER'S LEMMA

- Triangle *T* partitioned into elementary triangles
- Label vertices by {1,2,3} using Sperner labeling:
  - Main vertices are different
  - Label of vertex on an edge
    (i, j) of T is i or j
- Lemma: Any Sperner labeling contains at least one fully labeled elementary triangle



## PROOF OF LEMMA

- Doors are 12 edges
- Rooms are elementary triangles
- #doors on the boundary of *T* is odd
- Every room has ≤ 2 doors; one door iff the room is 123



## PROOF OF LEMMA

- Start at door on boundary and walk through it
- Room is fully labeled or it has another door...
- No room visited twice
- Eventually walk into fully labeled room or back to boundary
- But #doors on boundary is odd ■



## THE MODEL

- Assume there are three players
   A, B, C
- Goal is to assign the rooms and divide the rent in a way that is envy free: each player prefers their own room at the given prices
- Sum of prices for three rooms is 1
- Theorem: An envy-free solution always exists under some assumptions



• "Triangulate" and assign "ownership" of each vertex to each of A, B, and C, in a way that each elementary triangle is an ABC triangle



- Ask the owner of each vertex to tell us which room they prefer
- This gives a new labeling by 1, 2, 3
- Assume that a player wants a free room if one is offered to them

 Choice of rooms on edges is constrained by free room assumption



• Sperner's lemma (variant): such a labeling must have a 123 triangle



- Such a triangle is nothing but an approximately EF solution!
- By making the triangulation finer, we can approach envy-freeness
- Under additional closedness assumption, leads to existence of an EF solution ■

## DISCUSSION

- It is possible to derive an algorithm from the proof
- Same techniques generalize to more players
- Same proof (with the original Sperner's Lemma) shows existence of EF cake division!

# QUASI-LINEAR UTILITIES

- Suppose each player  $i \in N$  has value  $v_{ir}$  for room r
- For all  $i \in N$ ,  $\sum_{r} v_{ir} = R$ , where R is the total rent
- The utility of player i for getting room r at price  $p_r$  is  $v_{ir}-p_r$
- A solution consists of an assignment  $\pi$  and a price vector  $\boldsymbol{p}$ , where  $p_r$  is the price of room r
- Solution  $(\pi, \mathbf{p})$  is envy free if and only if  $\forall i, j \in \mathbb{N}, v_{i\pi(i)} p_{\pi(i)} \ge v_{i\pi(j)} p_{\pi(j)}$
- Theorem: An envy-free solution always exists under quasi-linear utilities



## PROPERTIES OF EF SOLUTIONS

• Assignment  $\pi$  is welfare-maximizing if

$$\pi \in \operatorname{argmax}_{\sigma} \sum_{i \in N} v_{i\sigma(i)}$$

- Lemma 1: If  $(\pi, p)$  is an EF solution, then  $\pi$  is a welfare-maximizing assignment
- Lemma 2: If  $(\pi, p)$  is an EF solution and  $\sigma$  is a welfare-maximizing assignment, then  $(\sigma, p)$  is an EF solution

## PROOF OF LEMMA 1

- Let  $(\pi, p)$  be an EF solution, and let  $\sigma$  be another assignment
- Due to EF, for all *i*,

$$v_{i\pi(i)} - p_{\pi(i)} \ge v_{i\sigma(i)} - p_{\sigma(i)}$$

• Summing over all *i*,

$$\sum_{i \in N} v_{i\pi(i)} - \sum_{i \in N} p_{\pi(i)} \geq \sum_{i \in N} v_{i\sigma(i)} - \sum_{i \in N} p_{\sigma(i)}$$

• We get the desired inequality because prices sum up to  $R \blacksquare$ 

## POLYNOMIAL-TIME ALGORITHM

- Consider the algorithm that finds a welfaremaximizing assignment  $\pi$ , and then finds prices  $\boldsymbol{p}$  that satisfy the EF constraint
- Theorem: The algorithm always returns an EF solution, and can be implemented in polynomial time

### Proof:

- We know that an EF solution  $(\sigma, \mathbf{p})$  exists, by Lemma 2  $(\pi, \mathbf{p})$  is EF, so we would be able to find prices satisfying the EF constraints
- The first part is max weight matching, the second part is a system of linear inequalities



## OPTIMAL EF SOLUTIONS



Straw Man Solution

Max sum of utilities Subject to envy freeness



**Maximin Solution** 

Max min utility
Subject to envy freeness



Equitable solution

Min max difference in utils Subject to envy freeness

## **OPTIMAL EF SOLUTIONS**

- Theorem: The maximin and equitable solutions can be computed in polynomial time
- Theorem: The maximin solution is unique
- Theorem: The maximin solution is equitable, but not vice versa

## DISCUSSION

- The first model makes no assumptions on utilities other than players preferring free rooms
- The second model assumes quasilinear utilities

Poll

Which model do you prefer, the first or the second?



## **INTERFACES**

#### Divide Your Rent Fairly

ADDII 28 201

When you're sharing an apartment with roommates, it can be a challenge to decide who takes which bedroom, and at what price. Sit down with your roommates and use the calculator below to find the fair division. RELATED ARTICLE

| What's your total rent? \$                            | 1000                     | How many of you a               | are there? 2 3               | 4 5 6 7 8                       |
|-------------------------------------------------------|--------------------------|---------------------------------|------------------------------|---------------------------------|
| If the rooms have the folio                           | owing prices, which      | room would you choose?          |                              |                                 |
| Choices will not necessarily be in division is found. | n order and the same roo | ommate may be asked to choose m | ultiple times in a row. Each | roommate keeps choosing until a |
| Roommate A                                            |                          | \$250<br>Room 1                 |                              | \$750<br>Room 2                 |
| Roomma                                                | te B                     | \$188<br>Room 1                 |                              | \$813<br>Room 2                 |
|                                                       |                          |                                 |                              |                                 |
| Past Choices                                          |                          |                                 | Room 1                       | Room 2                          |
| All                                                   |                          | Roommate B                      | \$125.00                     | \$875.00                        |
|                                                       |                          | Roommate B                      | \$250.00                     | \$750.00                        |
| Roommate A                                            |                          | Roommate B                      | \$500.00                     | \$500.00                        |
|                                                       |                          |                                 |                              |                                 |

#### NY TIMES (rental harmony)

https://www.nytimes.com/interactive/2014/science/rent-division-calculator.html



#### Spliddit (quasi-linear utilities)

http://www.spliddit.org/apps/rent