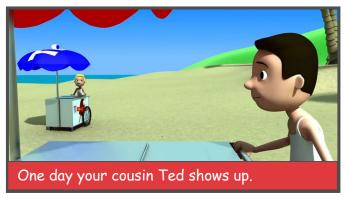


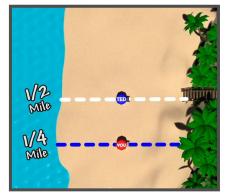
Spring 2025 | Lecture 1 Nash Equilibrium Ariel Procaccia | Harvard University

NORMAL-FORM GAME

- A game in normal form consists of:
 - ∘ Set of players $N = \{1, ..., n\}$
 - Strategy set S
 - For each $i \in N$, utility function $u_i: S^n \to \mathbb{R}$, which gives the utility of player $i, u_i(s_1, ..., s_n)$, when each $j \in N$ plays the strategy $s_j \in S$
- Next example created by taking screenshots of http://youtu.be/jILgxeNBK_8

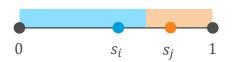
THE ICE CREAM WARS



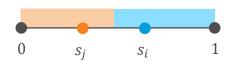


THE ICE CREAM WARS

 $N = \{1,2\}, S = [0,1], \text{ and } u_i(s_i,s_j) \text{ is defined as follows:}$



$$\frac{s_i + s_j}{2}$$
 if $s_i < s_j$



$$1 - \frac{s_i + s_j}{2} \text{ if } s_i > s_j$$

0.5 if
$$s_i = s_j$$

THE PRISONER'S DILEMMA

	Cooperate	Defect
Cooperate	-1,-1	-9,0
Defect	0,-9	-6,-6

What would you do?

UNDERSTANDING THE DILEMMA

- Defection is a dominant strategy
- But the players can do much better by cooperating
- Related to the tragedy of the commons

THE TRAGEDY OF THE COMMONS

Your Account Q

US Edition ∨

■ Live Now

Markets Indu

Industries Technology

Politics

Wealth

Opinion

Businessweek

Equality

Green

CityLab

Crypto N

More

Opinion Ariel Procaccia

Tech Giants, Gorging on Al Professors Is Bad for You

Pursuits

If industry keeps hiring the cutting-edge scholars, who will train the next generation of innovators in artificial intelligence?

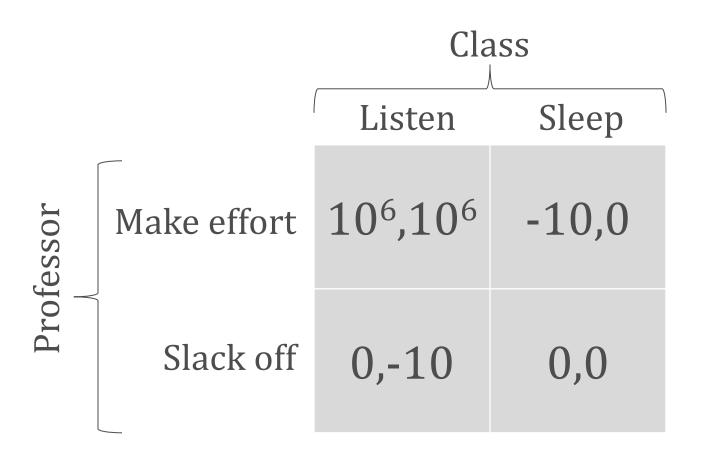
Eat too much and there won't be grass for anyone. Photographer: William West/AFP/Getty Images

By <u>Ariel Procaccia</u> January 7, 2019 at 6:00 AM EST

THE PRISONER'S DILEMMA ON TV

http://youtu.be/S0qjK3TWZE8

THE PROFESSOR'S DILEMMA



Dominant strategies?

John Forbes Nash

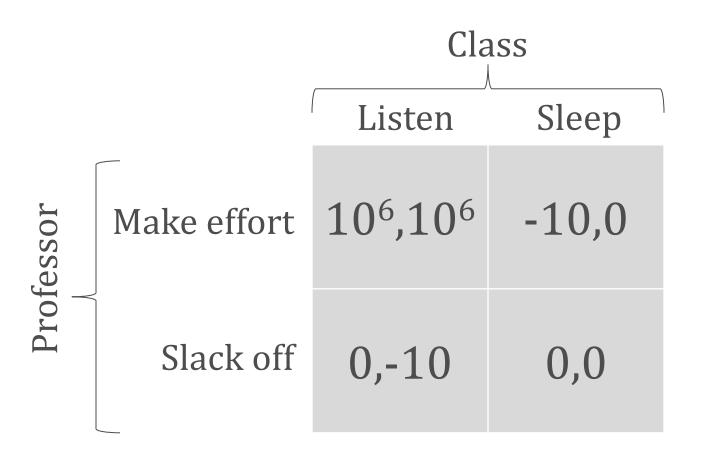
1928-2015

Mathematician and Nobel laureate in economics. Also remembered as the protagonist in "A Beautiful Mind."

NASH EQUILIBRIUM

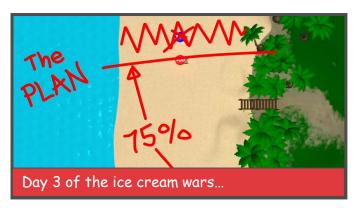
- In a Nash equilibrium, no player wants to unilaterally deviate
- Each player's strategy is a best response to strategies of others
- Formally, a Nash equilibrium is a vector of strategies $\mathbf{s} = (s_1 ..., s_n) \in S^n$ such that for all $i \in N, s'_i \in S$, $u_i(\mathbf{s}) \geq u_i(s'_i, \mathbf{s}_{-i})$

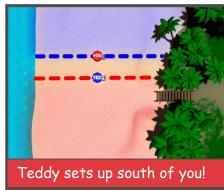
THE PROFESSOR'S DILEMMA



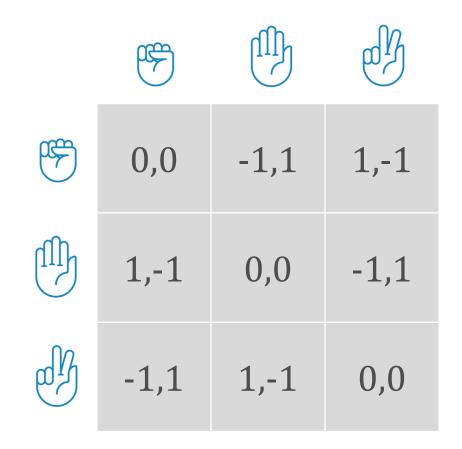
Nash equilibria?

END OF THE ICE CREAM WARS





ROCK-PAPER-SCISSORS



Nash equilibria?

MIXED STRATEGIES

- A mixed strategy is a probability distribution over (pure) strategies
- The mixed strategy of player $i \in N$ is x_i , where

$$x_i(s_i) = \Pr[i \text{ plays } s_i]$$

• The utility of player $i \in N$ is

$$u_i(x_1, ..., x_n) = \sum_{(s_1, ..., s_n) \in S^n} u_i(s_1, ..., s_n) \cdot \prod_{j=1}^n x_j(s_j)$$

EXERCISE: MIXED NE

- Exercise: player 1 plays $(\frac{1}{2}, \frac{1}{2}, 0)$, player 2 plays
 - $(0, \frac{1}{2}, \frac{1}{2})$. What is u_1 ?
- Exercise: Both players play $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. What is u_1 ?

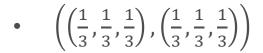
F	0,0	-1,1	1,-1
	1,-1	0,0	-1,1
all a	-1,1	1,-1	0,0

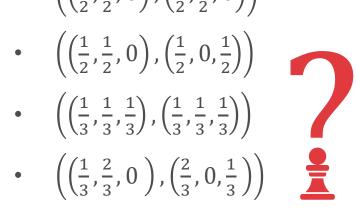
EXERCISE: MIXED

Which is a NE?

•
$$\left(\left(\frac{1}{2}, \frac{1}{2}, 0\right), \left(\frac{1}{2}, \frac{1}{2}, 0\right)\right)$$

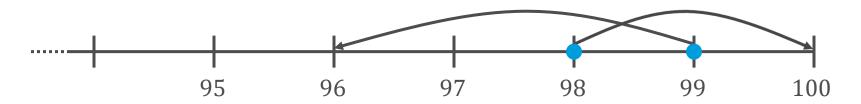
•
$$\left(\left(\frac{1}{2},\frac{1}{2},0\right),\left(\frac{1}{2},0,\frac{1}{2}\right)\right)$$





Theorem [Nash, 1950]: In any (finite) game there exists at least one (possibly mixed) Nash equilibrium

CAVEAT: NE PREDICTS OUTCOMES?



Two players, strategies are $\{2, ..., 100\}$. If both choose the same number, that is what they get. If one chooses s, the other t, and s < t, the former player gets s + 2, and the latter gets s - 2.

Poll 2

Suppose you are paired with another random student, and you must play this game with them (for real money) without communicating. What would you choose?

