Harvard CS 1360, Spring 2025
Instructor: Ariel Procaccia

EEI]NI]MI SEEMFIJTATII]N Scribe: Ethan Tan

Strategyproof Approximation Algorithms

Lecture 9

1 Introduction

This lecture explores strategyproof approximation algorithms in mechanism design, specifically in cases where
computing an optimal solution is computationally infeasible. We focus on single-minded auctions as a case
study.

2 VCG Mechanism and Its Limitations

Recall the definition of the Vickrey-Clarke-Groves (VCG) mechanism:
Definition 1 (The VCG Mechanism). The Vickrey-Clarke-Groves (VCG) mechanism is defined by:

e A welfare-maximizing choice rule:

f(v) € argmax 3 _ vi(x)

iEN
e A payment rule p, where A~ is the set of alternatives that are available when 7 is not present:

pi(v) = max ¥ v;(x) = > _vi(f

J#i J#i

Although it is strategyproof and welfare-maximizing, the VCG mechanism relies on computing the allo-
cation x that satisfies the welfare-maximizing choice rule:

f(v) € argmax > vi(x)

€N

And this is computationally hard in many settings.
Hence, we turn to strategyproof approximation algorithms, which are computationally feasible mecha-
nisms that allow us to retain strategyproofness while approximating the optimal solution.

3 Single-Minded Auctions

Definition 2 (Single-Minded Auction). A single-minded auction consists of:
e A set G of m goods.
e Each player ¢ € N has a target bundle T; C G.
e Player 7 has a value v;(S) = w; if T; C S and 0 otherwise.

For instance, consider this scenario with 4 players, goods {1,2,3,4}, and the following target bundles
and values for each player:

Player 1 2 3 4
Bundle | {1,2} | {2,3} | {1,3} | {3,4}
Value 4 2

If we assign goods {1, 2} to player 1, they receive a value of 5. Player 1 also receives a value of 5 if they get
{1,2, 3}, because they receive their target of {1,2} and no additional value for the extra good 3. However, if
we only assign {1} to player 1, they receive a value of 0, because their target bundle {1,2} was not in their
set of assigned goods. We also see by inspection that the welfare-maximizing allocation is {1, 2} to player 1
and {3,4} to player 4, yielding a total welfare of 7.

3.1 NP-Hardness

Maximizing welfare in single-minded auctions is NP-hard, as shown by a reduction from the Maximum
Independent Set problem.
The Maximum Independent Set problem is defined as follows:

Definition 3 (Maximum Independent Set). Given a graph G = (V, E), find the largest set S C V such that
no two vertices in S are adjacent.

Let us show that any instance of the Maximum Independent Set problem can be reduced to an instance
of the single-minded auction problem.

e Given a graph G = (V, E), construct a single-minded auction with players corresponding to vertices
and goods corresponding to edges.

e Each player desires the set of edges incident to their vertex, with value 1.

e The welfare-maximizing allocation gives us exactly the maximum independent set, because we choose
the maximum number of players such that no two players share an edge, and each player contributes
a value of 1.

So any algorithm that finds a welfare-maximizing allocation in single-minded auctions would also solve the
Maximum Independent Set problem. Hence, single-minded auctions are at least as hard as the Maximum
Independent Set problem, and are thus NP-hard.

For example, let’s apply the above reduction to this graph:

Here, our players are the nodes {1,2, 3,4}, the target bundle of any player i is the set of edges connected
to node 4, and each player has a value of 1 on their bundle.

Player 1 2 3 4
Bundle | {(1,2),(1,3)} | {(1,2),(2,3)} | {(2,3),(1,3)} | {(3,4)}
Value 1 1 1 1

Then finding the optimal allocation in this auction would give us exactly the maximum set of nodes (players)
such that no two nodes share an edge (no two players were assigned the same good).

4 The Greedy Mechanism

The greedy mechanism for single-minded auctions is an approximation algorithm that is also strategyproof.
It is defined as follows:

Definition 4 (Greedy Mechanism). Each player 4 submits a bid (7}, w;), where T; is the target bundle and
w; is the value. Then the greedy mechanism consists of:

e Allocation rule: Sort bids (T;,w;) in decreasing order of w;, breaking ties arbitrarily. Accept bids
greedily while feasible, i.e., if T} is disjoint from the bundles of previously accepted players.

e Payment rule: Each allocated player pays the critical value: the smallest w] such that their bid (T}, w})
would still be accepted.

Let us show that the greedy mechanism’s allocation and payments can be computed in polynomial time.
To do this, we define a helpful lemma to calculate the critical value for each player. We start by defining
the conflict set of a player:

Definition 5 (Conflict Set). Let N; be the set of winners if player ¢ is not present. The conflict set of player
1 is:

N{(T;) ={j € Ni | TinT; # 0}.
Which is the set of players in N; whose target bundles overlap with player i’s target bundle.

Then we can find the critical value of player i as follows:

Lemma 1 (Critical Value Calculation). The critical value of player i is:

wj = max wj,
JEN!(Ty)

i.e., the maximum value of any player in the conflict set of player 3.

Proof. For player i to be allocated, their bid must be higher than the competing bids in the conflict set
N/(T;). We don’t have to consider competing bids outside of IV; because those players are not allocated and
won’t affect whether player ¢ is allocated.

Now consider N;. Suppose some player j € N; has a target bundle that does not overlap with T;. Player
i does not need to outbid player j because even if player j is allocated, player ¢ can still be allocated since
their target bundles do not overlap.

Finally, we are left with the players in N/(T;). If player ¢ bids below any of these players, they will not
be allocated, since the greedy mechanism allocates players in decreasing order of value. Thus, player i’s bid
must be at least as high as the highest bid in N/(T;). O

It is then easy to define a polynomial-time algorithm to compute the allocation and payments for the
greedy mechanism:

Greedy Mechanism

1. Sort the bids in decreasing order of value.
2. Initialize the set of allocated players N, = ().
3. For each player ¢ in the sorted order:

(a) If T; is disjoint from the bundles of players in N,, add i to N,. Else, move to the next
player.

(b) Compute the critical value w¢, and assign w{ as the payment for player 7.

Then where n is the number of players, and m is the number of goods:
e Step 1 takes O(nlogn) time using any choice of efficient sorting algorithm.
e Step 3(a) takes O(m) time to check for disjointedness.

e To compute the critical value in Step 3(b), we first find N;, which at worst takes O((nlogn)-m) time
to sort the bids and find the allocated players. Then we find the maximum value in IV;, which at worst
takes O(nm) time to check each player for overlap with T; in decreasing order of value, returning the
maximum value or 0 if none was found.

3(a) and 3(b) are repeated for n players, so the total time complexity is polynomial in n and m.

4.1 Strategyproofness
Theorem 1 (Strategyproofness of Greedy Mechanism). The greedy single-minded auction is strategyproof.

Proof. Firstly, note that it is not useful for any player ¢ to misreport a bundle T/ that does not contain T},
as they will receive a value of 0 in that case. Thus it must be the case that T; C TZ’

Fixing T/, we now consider possible misreports of value, wj]. Player i’s allocation is monotone weakly
increasing in w}, because as w} increases from 0, there will be some point at which w} > w; for all players j
with bundles that intersect T}: this is when player i gets allocated. Beyond this point, any increase in w;
will not affect the allocation of player 4, since the greedy mechanism allocates to the highest bids first for
which the remaining goods are still allocatable.

Now we will show that the value that should be reported for T} is exactly the true value w;. Suppose
player i is currently to pay w§, the critical value. The reasoning here is similar to a second-price auction.

Consider a misreport of w; > w;. Player 4 can only go from not being allocated to being allocated, since
allocations are monotone weakly increasing. But if they are allocated, they will either still pay w§, or pay
more if some other player j with T; N7} # () had w; > w; and was allocated over player 7. In this case, they
will pay at least as much as their actual valuation of w; for the bundle 77, which is not beneficial.

Next, consider a misreport of w; < w;. If w; > w§, player i’s allocation and payment will not change
(where WLOG, we break ties in favor of player). If player ¢ was initially allocated but the new w; < w¢,
they will lose their allocation to the player whose value was wy. But since the original w; > w{, player i was
receiving non-negative utility from being allocated, since their payment was at most their true valuation,
which they have now lost.

So we see that any misreport of value either does not change player i’s value or results in a loss of utility.

Finally, we show that misreporting a larger bundle 7! D T; is not beneficial. Player i receives the same
value from T; and 77, but the conflict set N/(I}) O N/(T;) since there may be more players whose bundles
overlap with the larger T/. Thus, the critical value w¢ will either remain the same or larger while player 4
receives the same value, so this is not a useful misreport either.

Since a misreport in value or bundle is not beneficial, the greedy mechanism is strategyproof. O

5 Approximation Guarantees

Definition 6 (c-approximation for maximization problem). An algorithm is a c-approximation for a maxi-
mization problem if for all instances I and ¢ < 1:

ALG(I) > ¢- OPT(I),

where ALG(I) is the welfare of the solution produced by the algorithm, and OPT(I) is the welfare of the
optimal solution.

In words, the worst-case utility produced by the algorithm is at least a fraction c of the optimal solution.

Definition 7 (c-approximation for minimization problem). With the same notation, an algorithm is a
c-approximation for a minimization problem if for all instances I and ¢ > 1:

ALG(I) < ¢- OPT(I),

where ALG(I) is the cost of the solution produced by the algorithm, and OPT(I) is the cost of the optimal
solution.

In words, the worst-case cost produced by the algorithm is at most ¢ times the optimal solution.

5.1 Greedy Mechanism Approximation Ratio
We can now define the approximation ratio of the greedy mechanism:

Theorem 2 (Approximation Ratio of Greedy Mechanism). The greedy mechanism for single-minded auc-
tions is a 1/d-approximation, where d is the mazimum size of any target bundle.

A variant of the greedy mechanism sorting by w;/+/|T;| instead of w; gives a 1//m-approximation for
m items.

Theorem 3 (NP-Hardness of Better Approximation). Finding a better approzimation ratio for single-minded
auctions than 1/y/m is NP-hard.

That is to say, there is no polynomial-time algorithm that can achieve a better approximation ratio than
1/4/m for single-minded auctions, unless P=NP.
Finally, we prove Theorem 2:

Proof. Let Ny be the set of players allocated by the greedy mechanism, and Ny be the set of players in
the optimal solution.

Let’s think about the players whose allocations were ‘messed up’ by the greedy mechanism. First, consider
players i € Naig \ Nopt: these are the players who were not allocated in the optimal solution and wrongly
allocated by the greedy mechanism.

For each such 4, let IV; be the set of players j in the optimal allocation N,y that they blocked from being
allocated, i.e. where w; < w; and T; N1 # 0.

For all other players i € Nopi N Nalg, i.e. players rightfully allocated by the greedy mechanism, let
N; = {i}.

Now consider an arbitrary N;. First observe that:

ijg Zwi:|Ni|~wi.

JEN; JEN;

Because either N; = {i} and equality holds, or N; contains players j with w; < w;, so the sum must be at
least as big when we replace the w; with w;. Next, note that:

because for each player j € N;, T; N T} intersects on at least one item, and the T}’s are disjoint from each
other —recall that N; consists of players from the optimal allocation, and two players cannot be allocated
at once. But then since d is the largest bundle size, T; can have at most d intersections with other bundles.
Thus, |NV;| < d, and:

JEN;
In addition, note that:

Nept = |J N (2)
ieNalg

Let’s briefly prove each direction:

(Nopt € U,e Nug N;): For any player ¢ € Nopt, they were either allocated by the greedy mechanism and
so they must be in N; = {i}, or they were not allocated and so are in some N; where player j was allocated
by the greedy mechanism and blocked i.

(Nopt 2 U,c Nug N;): This follows immediately from how we defined each N;. For any player j in some
N; either they were allocated by both the greedy and optimal algorithm and are thus in Ngp¢, or they were
not allocated by the greedy mechanism but were in the optimal allocation and are thus in Nopt.

Putting it all together, with OPT as the welfare of the optimal solution and ALG as the welfare of the

greedy mechanism:

OPT = Z w; by definition

ieNopt

< Z Z w; from Eq. (2)
iGNalg_ JEN;

< Z d - w; from Eq. (1)
'LeNalg

4 Y

ieNalg
=d-ALG by definition.

For the first inequality, note that we may count some elements of Np¢ multiple times, which is why it is an
inequality instead of an equality. O

	Introduction
	VCG Mechanism and Its Limitations
	Single-Minded Auctions
	NP-Hardness

	The Greedy Mechanism
	Strategyproofness

	Approximation Guarantees
	Greedy Mechanism Approximation Ratio

