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We will begin with a reminder of the voting model.

Definition 1 (The Voting Model). The voting model includes

• Set of voters N = {1, . . . , n} (assume n ≥ 2).

• Set of alternatives A with |A| = m.

• Each voter has a ranking σi ∈ L over the alternatives, where x ≻σi
y means that voter i prefers x to y.

• A preference profile σ ∈ Ln is a collection of all voters’ rankings.

• A social choice function f : Ln → A.

So far we have assumed voters are honest and represent their preferences as they truly are. However,
voters can manipulate their votes strategically to achieve better outcomes.

Example 1 (Manipulation in the Borda Count). Consider the following true preference profile

1 2 3
b b a
a a b
c c c
d d d

Here, b has 8 points, a has 7 points, and c and d are both weaker, and so b wins under the Borda Count.
Now, what if voter 3 changes their vote, resulting in the following preference profile:

1 2 3
b b a
a a c
c c d
d d b

Now, a still has 7 points, but b has 6 points. Since c and d have even fewer points, a would be the winner
of this election. Thus, voter 3 manipulated their vote and misrepresented their true rankings to result in a
better outcome for themselves, because, in reality, they wanted a to win.

Seeing that his rule was easily manipulatable, Jean-Charles de Borda (1733–1799) said, “My rule is
intended for honest men!”

Definition 2 (Strategyproofness). Denote σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn). A social choice function f is
strategyproof (SP) if a voter can never benefit from lying about their preferences:

∀σ ∈ Ln,∀i ∈ N, ∀σ′
i ∈ L, f(σ) ⪰σi f(σ

′
i, σ−i).

In other words, f is strategyproof if truthful reporting is a dominant strategy because no other strategy
can guarantee a voter a better outcome.

Example 2 (When is Plurality Strategyproof?). It turns out that plurality is only strategyproof for a max-
imum of 2 alternatives. For 2 alternatives, the only deviation a voter can do is flip their second favorite
alternative with their top choice, which directly contributes to the second-favorite alternative’s count, re-
sulting in the same or a worse outcome for the voter. For 3 alternatives, however, if a voter’s top choice has
no chance of winning but their second and third choices are tied in plurality counts, that voter is better off
misreporting their true preference by reporting their second choice as their top choice to ensure their second
choice wins over their third choice.



Theorem 1 (Gibbard-Satterthwaite Theorem). Let m ≥ 3. A social choice function f is SP and onto A if
and only if f is dictatorial.

By “onto,” we mean that for any alternative, a strategy profile exists that will result in the alternative
getting selective. By “dictatorial,” we mean that there is a voter that always get their top choice, no
matter what other voters want. This theorem implies that any voting rule that is onto and nondictatorial is
manipulable.

For m ≥ 3, all common rules are onto and nondictatorial. What if we enforce SP and nondictatorial but
relax the onto constraint? The rule that says “regardless of anyone’s votes, pick alternative a” is SP and
nondictatorial, because no one’s votes matter. Further, the rule that says “in advance, we decide that either
a or b wins, and we’ll take the majority between them” is also SP and nondictatorial.

Proof Sketch of G-S. If f is dictatorial, then trivially f is onto because the dictator can rank any alternative
first, and f is also SP because the dictator is best-off telling their true preference because it will be the result
of the election, and the reported preferences of all other voters do not matter. Proving the other direction
of the G-S Theorem is far more interesting.

We will start with the following lemmas:

• Strong monotonicity: If f is a SP function and σ is some strategy profile where f(σ) = a, then f(σ′) = a
for all profiles σ′ such that ∀x ∈ A, i ∈ N : a ≻σi x =⇒ a ≻σ′

i
x.

• Unanimity: If f is a SP and onto function, and σ is a strategy profile where a ≻σi b for all i ∈ N , then
f(σ) ̸= b.

Strong monotonicity can be interpreted as the following: if f is strategyproof then if the outcome of some
strategy profile is a, then if you make a new strategy profile where everything that was ranked below a in
voter preferences stays ranked below a (regardless of where the alternatives above a are ranked), then the
outcome of the election will still be a. Unanimity can be interpreted as the following: If f is strategyproof
and onto, then if everyone ranks a above b then b will not win the election.

Let us also assume that m ≥ n and neutrality, that states that for any permutation of alternatives
π : A → A, then

f(π(σ)) = π(f(σ))

That is to say, if a was the winner of an election and we permute the alternatives in the strategy profile
such that some alternative b takes a’s place in every voter’s ranking, then the winner from this new strategy
profile will be b. Note that neutrality and m ≥ n are assumptions that are not necessary for the G-S Theorem
but they make the proof more simple.

We will even further simplify the proof for m = 5 and n = 4. You should be able to generalize for m ≥ n
from here. Assume that f is SP and onto. Consider the profile:

σ =

1 2 3 4
a b c d
b c d a
c d a b
d a b c
e e e e

Note here that all voters rank e last, and alternatives a through d are ranked in a cyclic fashion across the
voters. By unanimity, it is clear that e is not the winner. Since alternatives a through d are all symmetric
across the preferences, WLOG assume f(σ) = a. Now, consider the following strategy profile, created
matching the rankings of voters 2 and 3 to the ranking of voter 4:

σ1 =

1 2 3 4
a d d d
d a a a
b b b b
c c c c
e e e e
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By strong monotonicity, it follows that f(σ1) = a. Strong monotonicity applies because the preferences of
voters 2 and 3 are the only preferences that changed, and for each of them the alternatives ranked below a
in σ are still below a in σ1. Now, consider the following strategy profile constructed by changing voter 2’s
ranking by dropping a to their least favorite preference:

σ2 =

1 2 3 4
a d d d
d b a a
b c b b
c e c c
e a e e

Note that in this profile, alternative d dominates alternatives b, c, and e, so the winner cannot be either
of these three alternatives. Further, since f is SP, the winner cannot be d because otherwise voter 2 would
have had a useful misrepresentation if σ1

2 was their true preference, as they would prefer d over a and by
misrepresenting to σ2

2 they could change the result from a to d. Thus, from the process of elimination, we
conclude that f(σ2) = a. Similarly, if we construct σ3 by changing voter 3’s ranking by dropping a to their
least favorite preference, we will get f(σ3) = a by the same rationale. If we construct σ4 by further editing
voter 4’s preferences, we will get f(σ4) = a where

σ4 =

1 2 3 4
a d d d
d b b b
b c c c
c e e e
e a a a

From here, we claim that strong monotonicity implies that f(σ′) = a for every σ′ where voter 1 ranks a
first. That is because if voter 1 ranks a first in σ′, then all alternatives that were ranked below a in σ4 are
ranked below a in σ′ (because no alternatives are ranked below a in the preferences of voters 2, 3, or 4), and
so strong monotonicity says that f(σ′) = a as well. We now claim that neutrality implies that voter 1 is a
dictator. This is because for any strategy profile σ′, if voter 1 ranks alternative x first in σ′, then we can
construct a permutation π that swaps x with a. Since we have just shown that f(π(σ′)) = a (voter 1 ranks
a first in π(σ′)), it follows from neutrality that π(f(σ′)) = a and so f(σ′) = x, implying that voter 1 is a
dictator, because whatever they ranked first won the election! Note that if originally f(σ) was b, c, or d, we
would have shown that voter 2, 3, or 4 was the dictator, respectively.

Manipulation may be unavoidable, but can we design “reasonable” voting rules where manipulation is
computationally hard? If it is too computationally hard to find a useful manipulation, we can get voters to
just represent their true preferences and circumvent the G-S Theorem!

Definition 3 (The Computational Problem). The f -MANIPULATION problem is defined as follows: Given
votes of non-manipulators and a preferred alternative p, can a manipulator cast a vote that makes p uniquely
win under f?

Example 3 (The Computational Problem using Borda). If the manipulator is the third voter, the preferred
alternative is p = a, and the votes of the first two (non-manipulating) voters are given by

1 2 3
b b
a a
c c
d d

can voter 3 make a uniquely win under the Borda Count? In this case, the answer to the f -MANIPULATION
is yes. Voter 3 can report a ≻ c ≻ d ≻ b, resulting in a winning the election with 8 points while b, c, and d
lose with 6, 4, and 1 points, respectively.
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Consider the following greedy algorithm for the f -MANIPULATION problem:

• Rank p in first place.

• While there are unranked alternatives:

– If an alternative can be placed without preventing p from winning, place it.

– Otherwise, return false.

Example 4 (Greedy Algorithm with Borda). Consider the same problem as before, where voter 3 wants a
to win given the other two voters’ rankings. Following the greedy algorithm, we place a first to get

1 2 3
b b a
a a
c c
d d

Now, the algorithm attempts to put b as the second place, but making this placement will give b 8 points
while a only has 7, so we cannot do that. However, if we place c as the second place, c will only have 4
points, so a will still be the winner. Thus, we have Step-by-step ranking process:

1 2 3
b b a
a a c
c c
d d

Now, we attempt to place b as the third choice. This would give b 7 points, but since we want a to be the
unique winner, we cannot place b here. If we place d in the third place, d will have 1 point and so a will still
be winning. Thus, we make this placement and get

1 2 3
b b a
a a c
c c d
d d

as our working preference profile. Finally, we attempt to place b in the fourth place of voter 3’s rankings,
giving b 6 points which still allows a to win with 7 points. Thus, we make this placement to get the preference
profile

1 2 3
b b a
a a c
c c b
d d d

The algorithm concludes after successfully finding a ranking that satisfies the f -MANIPULATION prob-
lem.

We now look at this algorithm in the context of Llull’s Rule. Remember that this is the rule that assigns
points according to the number of pairwise comparisons won by a given alternative.

Example 5 (Greedy Algorithm with Llull). Consider the following preference profile that results in the
pairwise comparison matrix on the right

1 2 3 4 5
a b e e a
b a c c
c d b b
d e a a
e c d d

→

a b c d e
a − 2 3 5 3
b 3 − 2 4 2
c 2 2 − 3 1
d 0 0 1 − 2
e 2 2 3 2 −
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Here, a is winning with a score of 3, as it has a majority against c, d, e. Now, if we try to place b as
the second place, b will achieve a score of 4, as it would beat every other alternative, so we can’t make
this placement. If we place c as the second place, c will achieve have a score of 2, which still results in a
as the winner. Thus, we make this placement and get the following strategy profile with updated pairwise
comparisons:

1 2 3 4 5
a b e e a
b a c c c
c d b b
d e a a
e c d d

→

a b c d e
a − 2 3 5 3
b 3 − 2 4 2
c 2 3 − 4 2
d 0 0 1 − 2
e 2 2 3 2 −

If we try to place b as the third place, b will achieve a score of 3 and tie with a, so we can’t make this
placement. If we place d as the third place, d will achieve a score of 1, which still results in a as the winner.
Thus, we make this placement and get the following strategy profile with updated pairwise comparisons:

1 2 3 4 5
a b e e a
b a c c c
c d b b d
d e a a
e c d d

→

a b c d e
a − 2 3 5 3
b 3 − 2 4 2
c 2 3 − 4 2
d 0 1 1 − 3
e 2 2 3 2 −

If we try to place b as the fourth place, b will still achieve 3 points and tie with a. But we can place e
next, as it will only have a score of 2, leading to the profile:

1 2 3 4 5
a b e e a
b a c c c
c d b b d
d e a a e
e c d d

→

a b c d e
a − 2 3 5 3
b 3 − 2 4 2
c 2 3 − 4 2
d 0 1 1 − 3
e 2 3 3 2 −

Finally, we note that placing b last will not change any of the pairwise comparisons and b will have a score
of 2. Thus, we can place b and a will remain the winner. We now conclude that the ranking a ≻ c ≻ d ≻ b ≻ e
satisfies the f -MANIPULATION problem, and we are done.

So when does this greedy algorithm work?

Theorem 2. Fix i ∈ N and the votes of other voters. Let f be a rule such that a function s(σi, x) satisfies:

1. For every σi, f chooses an alternative that uniquely maximizes s(σi, x).

2. If {y : y ≺σi x} ⊆ {y : y ≺σ′
i
x}, then s(σi, x) ≤ s(σ′

i, x).

Then, the greedy algorithm decides the f -MANIPULATION problem correctly.

Here, voter i is the manipulator. s can be thought of as the score function of an alternative under a
preference profile. The second criterion just states that if you have two rankings for the manipulator σi and
σ′
i, and the alternatives ranked below x in σi is a subset of the alternatives ranked below x in σ′

i, then the
score of x under σ′

i is at least as large as the score of x under σi.

Proof. Suppose the algorithm failed, producing a partial ranking σi. Assume for contradiction that some
σ′
i makes p win. Let U denote the set of alternatives not ranked in σi. Let u denote the highest-ranked

alternative in U according to σ′
i. Now. complete σi by adding u next, and then the other alternatives in U

arbitrarily. By Property 2, s(σi, p) ≥ s(σ′
i, p) because σi ranks p first. Additionally, by Property 1 and the

fact that σ′
i makes p the winner, it follows that s(σ′

i, p) > s(σ′
i, u). Finally, by Property 2 s(σ′

i, u) ≥ s(σi, u)
because u is the highest ranked alternative in U within σ′ and the only alternatives ranked below u in σ are
the other alternatives in U . Thus, by transitivity, we get that s(σi, p) > s(σi, u), and so the algorithm could
have inserted u next, contradicting its failure.

5



This theorem captures rules like Borda Count, plurality, Llull’s rule, and many other rules that are based
on simple scores, as long as you have simple tie-breaking rules. This is bad news, as we set out to find
rules that are computationally hard to manipulate, but a simple greedy algorithm allows these rules to be
manipulated.

However, there are a couple of rules that are known to be computationally difficult to manipulate. These
include IRV and Llull’s rule with more complicated tie-breaking rules (like second-order Llull scores). But
worst-case hardness isn’t necessarily an obstacle to manipulation in the average case!
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