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The Price of Anarchy
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Lecture 4
We’ll start off this lecture by looking at an interesting phenomenon: closing roads oftentimes speeds up

traffic. For example, a well-known instance of this is in Seoul, South Korea, where the city closed a major
highway along the Cheonggyecheon Stream to revitalize the area. Counterintuitively, among other benefits,
traffic flow actually improved as drivers redistributed across other routes. This counterintuitive effect, known
as Braess’s Paradox, challenges our typical assumptions about routing games.

Example 1 (Braess’ Paradox). Consider a situation in which 200 travelers want to get from work (A) to
home (D). Initially, each traveler can take one of two paths:

• Go from A to B, taking k
10 minutes for each traveler where k is the number of travelers who take this

path, and then go from B to D, which takes 20 minutes for each traveler.

• Go from A to C, taking k
10 minutes for each traveler where k is the number of travelers who take this

path, and then go from C to D, which takes 20 minutes for each traveler.

A graphical depiction of these paths is provided below.
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Here, in Nash equilibrium, 100 travelers take each route and the travel time for each traveler is 30 minutes,
because both A to B and C to D take 100

10 = 10 minutes. Note that this is a Nash equilibrium because
a unilateral deviation by any traveler results in their traveling time being 20 + 101

10 = 30.1 minutes. Now,
consider the addition of a 2-way street between B and C as shown below:
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Now, in Nash equilibrium, all travelers take the path from A → B → C → D, and so every traveler takes
200
10 + 200

10 = 40 minutes to get to D. Note that no traveler has a useful unilateral deviation because flipping
to any of A → B → D, A → C → D, or A → C → B → D all result in the same 40 minutes of travel.

This displays Braess’ paradox: the Nash equilibrium outcome by adding a road results in longer travel
times than the Nash equilibrium without the road.



We will now provide a general definition for routing games:

Definition 1 (Routing Games). An (atomic) routing game consists of

• A set of players N = {1, . . . , n}

• A directed graph G = (V,E)

• For each e ∈ E, a nonnegative and nondecreasing cost function ce : N → R+

• For each i ∈ N , a source and sink ai, bi ∈ V

The strategy set Si of each i is all paths from ai to bi. In a strategy profile s, ne(s) players are using edge
e. The cost of player i is

costi(s) =
∑
e∈si

ce(ne(s))

Finally, the social cost is

cost(s) =
∑
i∈N

costi(s)

Example 2 (Routing Game). Consider the following routing game between 3 players. Player i’s source is
labeled as ai and their sink is labeled as bi. Each edge’s cost function ce is written next to the edge as a
function of the number of players k who traverse that edge.
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If player 1 takes the blue path, player 2 takes the orange path, and player 3 takes the green path, player
1’s cost is 1 + 3 · 2 = 7, player 2’s cost is 1 + 3 · 2 + 1 = 8, and player 3’s cost is 1 + 1 = 2. Thus, we get
a social cost of 17. In the optimal solution, player 1 takes a1 → x → b1, player 2 takes a2 → x → b3 → b2,
and player 3 takes a3 → x → b3. Thus, player 1’s cost is 1 + 3 · 1 = 4, player 2’s cost is 1 + 1 + 1 = 3, and
player 3’s cost is 1 + 1 = 2, resulting in a social cost of 9.

We are talking about pure Nash equilibria, but how do we know they even exist? We will characterize
the existence of pure Nash equilibria by first defining the notion of an “exact potential game.”

Definition 2 (Exact Potential Games). A game is an exact potential game if there exists a function Φ :∏n
i=1 Si → R such that for all i ∈ N , for all s ∈

∏n
i=1 Si, and for all s′i ∈ Si,

costi(s
′
i, s−i)− costi(s) = Φ(s′i, s−1)− Φ(s)

In other words, for any strategy profile, when player i unilaterally deviates from their original strategy,
the change in value of Φ equals the change in player i’s cost. We call Φ an exact potential function for the
game.
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The existence of an exact potential function implies the existence of a pure Nash equilibrium, and the
set of pure Nash equilibria can be found by locating the local minima of the exact potential function. This
is because, at these local minima, no player can improve their cost by switching routes, as the potential
function exactly maps the increases of individual costs by deviations of individual players. Thus, as players
repeatedly make cost-reducing moves, the potential function decreases and converges to a local minimum,
where no player can improve their cost by switching routes.

We will now show that routing games actually do fall under this category of games.

Theorem 1. Routing games are exact potential games.

Proof. Define the potential function

Φ(s) =
∑
e∈E

ne(s)∑
k=1

ce(k)

Now, suppose player i deviates from path si to path s′i. Then, the difference costi(s
′
i, s−i) − costi(s) is

just ∑
e∈s′i\si

ce(ne(s) + 1)−
∑

e∈si\s′i

ce(ne(s))

Note that here, the first term is the cost imposed by the edges added to s and the second term is the
cost removed by the edges removed from s. We claim that this is precisely Φ(s′i, s−i) − Φ(s). This follows
because to move from Φ(s) to Φ(s′i, s−i), only the terms for the edges that are in s′i and were not in si, and
the edges that were in si and are now not in s′i, are affected. For the edges e that are in s′i and were not in
si, we must add ce(ne(s+ 1)) because now player i is using that edge and they were not before, so we now

have
∑ne(s)+1

k=1 ce(k) within the term for e in the formula for Φ(s′i, s−i). Further, for the edges e that are not
in s′i but were in si, we must remove ce(ne(s)) because now player i is now not using that edge, so we now

have
∑ne(s)−1

k=1 ce(k) within the term for e in the formula for Φ(s′i, s−i).
Thus, routing games are exact potential games, implying that all routing games have a pure Nash

equilibrium.

We will now look at the upper bounds of how bad the outcomes of equilibria can be as compared to the
optimal solution in different classes of games. This is known as the price of anarchy

Definition 3 (Price of Anarchy (PoA)). Fix a class of games, an objective function, and an equilibrium
concept. The price of anarchy is the worst-case ratio between the worst objective function value of an
equilibrium of the game, and that of the optimal solution.

For the rest of this lecture, our objective function will be the social cost, and our equilibrium concept
will be pure Nash equilibria.

Example 3 (PoA of Routing Games). Consider the following routing game, where n players wish to go
from A to C. Here, k represents the number of players going through the path.
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In this game, a pure Nash equilibrium is all n players taking the path A → B → D → C, resulting in a
travel time of 2n for everyone. Note that this is a Nash equilibrium because any single player’s deviation to
A → D → C or A → B → C results in the same 2n travel time. Here, the social cost is just 2n · n = 2n2.

However, in this case, the social-cost-optimal solution is to send n
2 players along the path A → B → C

and n
2 players along the path A → D → C, resulting in a social cost of n

2 · n
2 + n

2 · n+ n
2 · n+ n

2 · n
2 = 3n2

2 .
Thus, we get that a lower bound for the price of anarchy in this case is just

2n2

3n2

2

=
4

3

Now, consider another routing game, with 4 players where the set of (ai, bi) pairs is

{(A,B), (A,C), (B,C), (C,B)}
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In this game, the optimal solution is for all players to take the path with cost k directly to their sink.
Thus, player 1 will take A → B, player 2 will take A → C, player 3 will take B → C, and player 4 will take
C → B. This results in an overall social cost of

1 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 4

Note that this optimal solution is also clearly a Nash equilibrium. To see this, for any player, consider
any other path they could take to their sink. In every other path, the player must traverse at least one edge
with cost k, and thus this would not be a useful deviation for them. However, this is not the only Nash
equilibrium in the game.

Consider player 1 taking A → C → B, player 2 taking A → B → C, player 3 taking B → A → C, and
player 4 taking C → A → B. Here, player 1’s cost is 2 + 1 = 3, player 2’s cost is 2 + 1 = 3, player 3’s cost
is 0 + 2 = 2, and player 4’s cost is 0 + 2 = 2, resulting in an overall social cost of 10. To see that this is
a Nash equilibrium, it is clear that any player’s deviation to a path of length 3 or more is not useful, and
deviating to a path of length 1 will result in the same exact individual cost. To see this more clearly, if player
1 deviated to A → B, players 1. 2. and 4 would be taking A → B so player 1 will have a cost of 3. Similarly,
if player 2 deviated to A → C they would have a cost of 3, if player 3 deviated to B → C they would have a
cost of 2, and if player 4 deviated to C → B they would have a cost of 2. Thus, this strategy profile is Nash
equilibrium. Therefore, we get that a lower bound for the price of anarchy, in this case, is just

10

4
= 2.5

We can actually upper bound the price of anarchy for any routing game with linear cost functions with
the following theorem.

Theorem 2. For any routing game with linear cost functions, the price of anarchy is at most 2.5

Now, we have that all in all,
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• For any routing game with linear cost functions, for any Nash equilibrium s, we know that cost(s) ≤
2.5 · cost(OPT).

• There exists a routing game with linear cost functions, such that it has a Nash equilibrium s where
cost(s) ≥ 2.5 · cost(OPT)

Example 4 (Routing Game with Non-linear Cost Functions). Consider a routing game in which there are
n players and two edges from a common source to a common sink, one with cost 1 and one with cost (k/n)p.
We wish to find a lower bound on the PoA as p → ∞.

Note that a Nash equilibrium will always be for all n people to take the path with cost (k/n)p, because
in this case, the cost imposed on each individual player is just (n/n)p = 1 so deviating to the other edge for
a fixed cost of 1 is not useful. This Nash equilibrium results in a total social cost of

n ·
(n
n

)p

= n · 1 = n

On the other hand, consider the strategy profile where 1 player chooses to take the edge with a fixed cost of
1 and n− 1 players take the path with a cost of (k/n)p. Then, the total social cost is

n ·
(
n− 1

n

)p

+ 1

However, as p → ∞, the first term goes to 0. Thus, we get a lower bound of the price of anarchy in this
game is just n

1 = n

We will now introduce a different, but related class of games known as “cost sharing games.”

Definition 4 (Cost Sharing Games). Cost sharing games are the same as routing games with one exception:
each edge has a fixed cost ce that is split among the players using it.

Example 5 (Basic Cost Sharing Game). Consider the following cost sharing game played between two
players. The first player wishes to travel from A to B and the second player wishes to travel from C to D.
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Consider the strategy profile where player 1 takes A → B and player 2 takes C → D. This strategy
profile has a social cost of 10 + 10 = 20. This is a Nash equilibrium as if either player deviates to taking
the middle path to get to their sink, their cost will increase from 10 to 12. However, note that the optimal
solution is when player 1 takes A → E → F → B and player 2 takes C → E → F → D for a total social
cost of 2(1 + 5 + 1) = 14.

Example 6 (Lower Bounding PoA for Cost Sharing Games). Consider a cost sharing game with n players
and two edges between a common source and a common sink with costs 1 and n. Now, consider a strategy
profile where all n players take the edge with cost n, achieving a total social cost of n as this cost is split
across the n players where each player has an individual cost of 1. This strategy profile is a Nash equilibrium,
as no player would benefit from deviating to the path with a cost of 1. However, the optimal solution is for
all players to take the path with a cost of 1 achieving a total social cost of 1. Thus, we get a lower bound
for the price of anarchy of cost sharing games of n

1 = n.
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It turns out that this bound of n is an upper bound for the PoA of cost sharing games as well!

Theorem 3. The price of anarchy of cost sharing games is at most n

Proof. Let s be a Nash equilibrium and let s⋆ be an optimal solution. For all i, it holds that costi(s) ≤
costi(s

⋆
i , s−i) because i can’t gain from unilaterally deviating in a NE. But costi(s

⋆
i , s−i) ≤ n · costi(s⋆),

because in the worst case i pays for its path alone in the former and splits each edge cost n ways in the
latter. Summing over i, we get that cost(s) ≤ n · cost(s⋆), and so

cost(s)

cost(s⋆)
≤ n

as desired.

Definition 5 (Price of Stability (PoS)). Fix a class of games, an objective function, and an equilibrium
concept. The price of stability is the worst-case ratio between the best objective function value of an
equilibrium of the game, and that of the optimal solution.

Example 7 (PoS). Consider a cost sharing game with n players and two edges between a common source
and a common sink with costs 1 and n. Previously, we identified that the strategy profile where all players
take the path with cost 1 is the socially optimal solution. We further see that this is a Nash equilibrium
because the unilateral deviation of any player to the path of cost n will increase their individual cost from
1
n to n. Thus, we find that a lower bound on price of stability in this case is just

cost(Nash)

cost(OPT)
=

1

1
= 1

Example 8 (A Tighter Lower Bound on PoS for Cost Sharing Games). Consider a the following cost sharing
game with n players, where each player i wishes to travel from node i to b.
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Here, every player i has the option of choosing their individual path for a cost of t/i or they can jointly
build a path that has a total cost of t+1. Consider when t → ∞. Every player taking their own path for t/i
is a Nash equilibrium because no individual player would benefit from paying t+1 by going through node x.

Further, we know that this is the only Nash equilibrium. We will show this by proving no player can go
through x in a Nash equilibrium. Assume for the sake of contradiction that player n goes through x in a
NE. Then, the least they could possibly pay is t+1

n , which is when all n players go through x, but this can’t
be a NE because player n is better off going straight to b by paying t

n . Thus, player n can’t go through x in
a NE. Similarly, assume for the sake of contradiction that player n − 1 goes through x in a NE. Then, the
least they could pay by going through x is t+1

n−1 , which is when players 1 through n − 1 go through x. But

then player n − 1 is better off going straight to b by paying t
n−1 . Thus, player n − 1 can’t go through x in

a NE. This process continues for all other players, showing that the aforementioned strategy profile is the
only Nash equilibrium.

The social cost of this Nash equilibrium is

t

1
+

t

2
+ · · ·+ t

n
= tH(n)
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where H(n) is the nth harmonic number.
However, note that the socially optimal solution is when all n players go through x, incurring a total

social cost of t+ 1. We then see that as t → ∞, we get a lower bound on the PoS of H(n) = Ω(log n).

Like routing games, cost sharing games exact potential games with essentially the same potential function:

Φ(s) =
∑
e∈E

ne(s)∑
k=1

ce
k

Using this, we now present a theorem on the price stability of cost sharing games.

Theorem 4. The price stability of cost sharing games is O(log n).

Proof. We know that cost(s) ≤ Φ(s) ≤ H(n) · cost(s). Thus, if we take a strategy profile s⋆ that minimizes
Φ, as described earlier, we know that s⋆ is a NE. Thus, we get that

cost(s⋆) ≤ Φ(s⋆) ≤ Φ(OPT) ≤ H(n) · cost(OPT)

as desired.

In summary, we have that for cost sharing games

• Upper bounds: For any cost sharing game,

– The PoA gives us that for any NE s

cost(s) ≤ n · cost(OPT)

– The PoS gives us that there exists a NE s such that

cost(s) ≤ H(n) · cost(OPT)

• Lower bounds: There exists a cost sharing game such that

– The PoA gives us that there exists a NE s such that

cost(s) ≥ n · cost(OPT)

– The PoS gives us that for any NE s

cost(s) ≥ H(n) · cost(OPT)
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