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Definition 1 (Extensive-Form Games). In an extensive-form game, moves are done sequentially, not simul-
taneously. The game forms a tree where nodes are labeled by players, edges represent the strategies of players,
and leaves show payoffs. Games start at the root of the tree and at each node, the node’s corresponding
player chooses a strategy out of the edges that come out of the node.

Example 1 (Basic example of an extensive-form game). Consider the following graph representation of an
extensive-form game.
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Every path from root to leaf in the tree represents a combination of strategies of players 1 and 2 that
results in a payoff. This tree describes the following payoff structure:

• If player 1 chooses left, then player 2 chooses left, player 1 gets 2 and player 2 gets 4.

• If player 1 chooses left, then player 2 chooses right, player 1 gets 5 and player 2 gets 3.

• If player 1 chooses right, then player 2 chooses left, then player 1 chooses left, player 1 gets 1 and player
2 gets 0.

• If player 1 chooses right, then player 2 chooses left, then player 1 chooses right, player 1 gets 0 and
player 2 gets 1.

• If player 1 chooses right, then player 2 chooses right, player 1 gets 3 and player 2 gets 2.

So how do extensive-form games compare to normal-form games? Consider the following (very abstract)
model of the Cuban Missile Crisis which we will model as a game between the US and the USSR:

Example 2 (The Cuban Missile Crisis). In this scenario, the USSR has positioned its missiles in Cuba and
the US has two options: it can either ignore this move or it can respond. Further, if the US responds, the
USSR has two options: it can either compromise or start a nuclear war. Consider the following extensive-form
representation of this game, provided on the left below.
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Note that if the US chooses to ignore, the payoff is (0, 2). If the US chooses to respond and the USSR
chooses to compromise, the payoff is (1, 2) and if in this case the USSR chooses to engage in a nuclear war,
the payoff is (−109,−109).

Now, consider the equivalent normal-form representation of the game, provided on the right above. Note
that the payoff is (0, 2) if the US chooses to ignore regardless of the USSR’s strategy, as the game always
ends in this leaf if the US ignores. Now, note that the strategy profile (Ignore, Nuclear War), highlighted in
blue in both representations, is a Nash equilibrium of this game. However, there is a problem: the USSR’s
threat of a nuclear war is not credible! That is because if the game ever ends up at the node in which the
USSR must make a decision, the USSR will always choose to compromise because that will result in a payoff
of 1 as compared to the −109 that they will receive if they choose to engage in a nuclear war.

The lack of credibility of the USSR’s threat is due to the sequential nature of the game, which is only
captured in the extensive-form representation of the game, not the normal-form representation. Although
(Ignore, Nuclear War) is a Nash equilibrium of this game, the USSR would never choose to engage in a nuclear
war after the US has chosen to respond, which leads us to believe that our notion of a Nash equilibrium has
various issues in this setting. This leads us to the concept of a subgame-perfect equilibrium.

Definition 2 (Subgame-Perfect Equilibrium). In an extensive-form game, each subtree forms a subgame.
A set of strategies is a subgame-perfect equilibrium if it is a Nash equilibrium in each subgame.

Let’s apply this to our previous example. In the subgame where the USSR chooses either Compromise or
Nuclear war, Compromise is a Nash equilibrium as this is a one-player game where Compromise is a dominant
strategy. Now, considering the larger subgame that starts with the US choosing Respond or Ignore, we see
that the strategy profile (Respond, Compromise) is the only subgame-perfect equilibrium. We can check this
by noting that if the US deviates to Ignore, their payoff will decrease from 2 to 0, and if the USSR deviates
to Nuclear War, their payoff will decrease from 1 to −109.

An interesting phenomenon of extensive-form games is that agents may be able to improve their equi-
librium payoff by eliminating their own strategies from the game. In our example, the USSR can improve
their subgame-perfect equilibrium outcome by eliminating their Compromise strategy from the game. Note
that in this case, the US will always choose Ignore, resulting in a payoff of 0 for the US and 2 for the USSR
rather than choosing Respond which will result in a payoff of −109 for both players. Thus, by removing
their Compromise strategy, the USSR increases their equilibrium payoff from 1 to 2.

So how do we solve for subgame-perfect equilibria? It’s actually quite simple - we can proceed with
backward induction by solving for the equilibria at the leaves of the tree and working up from there. At
each step, we can simplify a subgame into the payoffs received by all players if the game ever reaches the
root node of that subgame. Consider the following example:

Example 3 (Backward Induction). Consider the extensive-form game depicted in Figure 1a below. In order
to solve for the subgame-perfect equilibrium, start with the subgame represented by the subtree rooted at
the highlighted node, where player 1 needs to choose between left and right receiving a payoff of 1 or 0
respectively. In the subgame-perfect equilibrium, if the game ever reaches this subgame, player 1’s strategy
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will trivially be to choose left and receive a payoff of 1. Thus, we can replace the subtree rooted at the
highlighted node with the payoff that the game will result in if the game ever reaches that subgame, shown
in Figure 1b as we replace the subtree with a 1, 0.

Now, considering the subgame represented by the subtree rooted at the new highlighted node in 1b,
we see that player 2 must choose between left and right receiving a payoff of 4 or 3 respectively. In the
subgame-perfect equilibrium, if the game ever reaches this subgame, player 2’s strategy will trivially be to
choose left and receive a payoff of 4. Thus, we can replace the subtree rooted at this highlighted node with
the payoff that the game will result in if the game ever reaches that subgame, shown in Figure 1c as we
replace the subtree with a 2, 4.

Continuing this process, we consider the subgame represented by the subtree rooted at the highlighted
node in Figure 1c, we see that player 2 will always choose right in this subgame, so we replace this subtree
with a 3, 2 in Figure 1d. Finally, considering the final subgame represented by the subtree rooted at the
highlighted node in Figure 1d, player 1 will always choose right in this subgame so we can replace this tree
with a 3, 2 as depicted in the first cell of Figure 1e, which is the payoff of the players in the subgame-perfect
equilibrium. Note that to get the strategy profile of this subgame-perfect equilibrium, we can just keep track
of the strategies we found for the two players in each subgame, as shown in Figure 1f.

Note that this isn’t a proof that backward induction successfully identifies a subgame-perfect equilibrium,
however, this process is reasonably intuitive as at every point in the game, a player is doing what is best for
them given that the moves after that point will also be optimal for themselves. In fact, backward induction
up to tie-breaking will give you all of the possible subgame-perfect equilibrium in a game. This process
is easy enough if we have the representation of the game and we are able to eliminate nodes one by one.
However, if you are faced with a very large game, this process is not computationally feasible at all.

Note that while subgame-perfect equilibria capture more nuances in player strategies than Nash equilibria
do in extensive-form games, there are still some issues with them when looking at the empirical strategies
of players in certain situations.

Example 4. Consider the following extensive-form game played between two players:

1 2 1 2 1 2

1, -1 0, 2 3, 1 2, 4 5, 3 4, 6

7, 5

We can solve for the subgame-perfect equilibrium via backward induction. Starting at the smallest
subgame, we see that player 2 will always choose down (payoff of 6) over right (payoff of 5) if the game
ever reaches this subgame. Continuing up the tree to the subgame rooted at the green node, we see that
player 1 will always choose down (payoff of 5) over right (payoff of 4 because player 2 will choose down).
This process continues up the tree, and we get that at any subtree, the player whose turn it is will choose
down. Thus, when the game starts, player 1 will choose down in the subgame-perfect equilibrium, resulting
in a payoff of (1,−1). However, because of the structure of the game, payoffs generally increase as the game
continues down the tree and so both players are generally better off by letting the game continue rather than
”defecting” and choosing down and some early point in the game.

If you were playing the game as player 1 against a classmate, where would you choose down? At the blue
node, the orange node, or the green node? Although the subgame-perfect equilibrium suggests the answer
to this question is going down on the blue node, most people would say otherwise.

Definition 3 (Imperfect Information Games). A chance node chooses between several actions according to
a known probability distribution. An information set is a set of nodes that a player may be in, given the
available information. A strategy must be identical for all nodes in an information set.

Example 5 (An Imperfect Information Game). Consider the following imperfect information game:
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The root node represents a chance node where a coin is flipped, with a 0.5 probability of H and a 0.5
probability of T . Player 1 observes the outcome of the flip before choosing their action. Player 1 can either
”Bet” or ”Fold.” If Player 1 folds, the game ends with payoffs of -5 for Player 1 and 0 for Player 2 if the
coin shows heads, and 5 for Player 1 and 0 for Player 2 if the coin shows tails. If Player 1 bets, the decision
moves to Player 2, who does not know the outcome of the coin flip. Player 2 then chooses between ”H” and
”T.” The payoffs vary depending on Player 2’s choice and the actual coin flip, with payoffs of -1,1 or 1,-1.

Note that trivially, if the coin lands H then player 1 will Bet, and if the coin lands T then player 1 will
Fold. Therefore, player 2 will always play H, because they will only ever make a decision if the coin lands
on H. If the −5 and 5 payoffs were flipped, however, then player 2 will always play T . Thus, we see that
it’s impossible to compute the optimal strategy of a subgame in isolation in imperfect information games.

We will now move on to a 2-step special case.

Definition 4 (Stackelberg Games). In a Stackelberg game, there is a leader and a follower. The leader
commits to a certain strategy and subsequently the follower observes the commitment and chooses a strategy.

Example 6 (A Basic Stackelberg Game). Consider the following Stackelberg game, where the row player
is the leader and the column player is the follower.[

(1, 1) (3, 0)
(0, 0) (2, 1)

]
Here, playing up is a dominant strategy for the row player and so the column player would play left, and

thus (1, 1) is the only Nash equilibrium outcome.
However, note that the row player can commit to playing down. Then, the follower will choose right,

and the outcome will be (2, 1) and so the leader is strictly better off! Here, if the leader announces their
commitment, the Stackelberg game can be rewritten as an extensive-form game of perfect information:
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Here, the subgame-perfect equilibrium is highlighted in blue, which is achievable when the game is played
as a Stackelberg game.

Now, what if the leader commits to a mixed strategy? What is the maximum payoff the leader can get
with a mixed strategy, assuming that the follower breaks their ties in favor of the leader? This turns the
game into the following imperfect information game:
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If the leader plays up with probability p and down with probability 1 − p, then the follower’s expected
payoff for choosing left is

p · 1 + (1− p) · 0 = p

and the follower’s expected payoff for choosing right is

p · 0 + (1− p) · 1 = 1− p

and so if p > 0.5 the follower will choose left and if p ≤ 0.5 the follower will choose right (note that
there is a tie at p = 0.5 and the leader is always better-off if the follower chooses right). Thus, if p > 0.5,
the leader’s expected payoff

p · 1 + (1− p) · 0 = p

and if p ≤ 0.5 the leader’s expected payoff is just

p · 3 + (1− p) · 2 = 2 + p

Thus, the leader’s expected payoff is maximized when p = 0.5 at which point the leader’s expected payoff
is 2.5 which is greater than 2! Thus, the randomness helps the leader due to imperfect information.

Definition 5 (Stackelberg Equilibrium). For a mixed strategy x1 of the leader, define the best response set
of the follower as

B2(x1) = argmaxs2∈Su2(x1, s2)
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In a strong Stackelberg equilibrium (SSE) the leader plays a mixed strategy in

argmaxx1∈∆(S)maxs2∈B2(x1)u1(x1, s2)

where ∆(S) is the set of all mixed strategies.

Now, we will see how an SSE can be computed via linear programming!

Example 7. Consider the following Stackelberg game where the row player is the leader and the column
player is the follower: (1, 0) (0, 2)

(0, 1) (1, 0)
(0, 0) (0, 0)


Note that playing down is weakly dominated for player 1, therefore we can essentially ignore this strategy,

but we still include it to give player 1 more flexibility. The SSE will be a mixed strategy s1 = (p1, p2) for
player 1, where p1 is the probability of playing up and p2 is the probability of playing middle. A best
response for player 2 is either left or right. We will set up two linear programs: one maximizing player 1’s
utility when player 2’s best response is left and one maximizing player 1’s utility when player 2’s utility is
right. Then, whichever linear program achieves a higher objective function (player 1’s utility), we will take
player 1’s corresponding mixed strategy and player 2’s best response as the SSE.

We first consider the case where the follower’s best response is left. This only happens when p2 ≥ 2p1,
because p2 is the follower’s utility for playing left and 2p1 is the follower’s utility for playing right. Further,
the leader’s utility when the follower plays left is just p1. Thus, we have the following linear program:

max p1

s.t. p2 ≥ 2p1,

p1 + p2 ≤ 1,

p1, p2 ≥ 0

The last two constraints come from the leader’s mixed strategy being a probability distribution over the
leader’s strategies. The solution to this LP is p1 = 1

3 and p2 = 2
3 , and the objective function is maximized

at a value of 1
3 .

We now consider the case where the follower’s best response is right. This happens when p2 ≤ 2p1, for
the analogous reasons as above. Here, the leader’s utility when the follower plays right is just p2. Thus, we
have the following linear program:

max p2

s.t. p2 ≤ 2p1,

p1 + p2 ≤ 1,

p1, p2 ≥ 0

The solution to this LP is also p1 = 1
3 and p2 = 2

3 , and the objective function is maximized at a value
of 2

3 . Note that in this case, both linear programs gave us the same optimal mixed strategy but the leader’s
utility is higher when the follower chooses right. Thus, the leader’s optimal mixed strategy here makes the
follower indifferent between left and right, so assuming that the follower breaks ties in favor of the leader,
the SSE here is s1 = ( 13 ,

2
3 ) and s2 = right.

In Figure 2, you can find an illustration of the solution space that the linear programs induce, and where
the optimal solution lies. The x-axis is p1, the y-axis is p2 and the solution space is limited by the constraint
that p1 + p2 ≤ 1 so all solutions must inside the large triangle. The orange region represents where the
follower plays right, the blue region represents the region where the follower plays left, and these regions
are divided by the line p2 = 2p1. Finally, note that the optimal solution exists on this indifference line at
( 13 ,

2
3 ).
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Figure 2

Now, consider slightly changing the payoff matrix to the following:(1, 0) (2, 2)
(0, 1) (1, 0)
(0, 0) (0, 0)


This changes our second linear program (when the follower’s best response is right) to the following:

max 2p1+p2

s.t. p2 ≤ 2p1,

p1 + p2 ≤ 1,

p1, p2 ≥ 0

because now the leader receives a payoff of 2 when they play up and the follower plays right. This further
changes the solution of this second LP to s1 = (1, 0) achieving an objective function of 2. Since this is higher
than the objective function (leader’s payoff) in the first LP, representing when the follower plays left, the
SSE changes to s1 = (1, 0) and s2 = right. A graphical depiction of this new game can be found in Figure
3. Note that the optimal solution has moved to (1, 0) in this new game.

We will now provide a more general algorithm for computing SSEs. The leader’s mixed strategy is defined
by variables x(s1), which give the probability of playing each strategy s1 ∈ S. For each follower strategy s∗2,
we compute a strategy x for the leader such that playing s∗2 is a best response for the follower, and under
this constraint, x is optimal. This computation is done via the following LP:

max
∑

s1∈S x(s1)u1(s1, s
∗
2)

s.t. ∀s2 ∈ S,
∑

s1∈S x(s1)u2(s1, s
∗
2) ≥

∑
s1∈S x(s1)u2(s1, s2)∑

s1∈S x(s1) = 1

Finally, we take the x resulting from the ”best” s∗2.
We will end this lecture with a brief discussion about AI’s role in game-playing. Over the last few

years, we have seen many advances in AI game-playing. For example, poker is an extensive form game of
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Figure 3

incomplete information because you do not know what cards your opponents are holding, and this introduces
a lot of complexity in the game making it hard for AI. However, we have reached a point where we can solve
extensive-form games with incomplete information and can do well in poker and beat humans. However,
these algorithms can be used for more than just recreational games. We can use the same algorithms to solve
problems that we care about in the real world. These algorithms are applicable to fields like negotiations
and cybersecurity and can result in much better policies in these situations. At this point, determining what
game we are playing in real-world situations and delineating the rules are far more difficult than actually
playing the game well. Much of Professor Milind Tambe’s work has been in this direction, as he has applied
game theoretic algorithms in real-world situations like physical security and wildlife protection.
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