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1 Introduction to Cooperative Games

Definition 1. A cooperative game is a pair (N, v), where:

• N = 1, . . . , n is the set of players

• v : 2N → R+ is the value function, which assigns a value to each coalition S ⊆ N

• We assume that v(∅) = 0

(For most games, we also assume for all S ⊆ T , v(S) ≤ v(T ), but this does not always hold.)
We can interpret a value function as: if the players work together as the group defined by the coalition

and collaborate, what is the value that they can generate?
Now, we want to explore the following questions in cooperative game theory:

1. What is the ”best” coalition structure? For example, one such coalition to pick from is the grand
coalition where we include all the players

2. How should payoffs be divided among the players?

Cooperative games model situations where players can form binding agreements and cooperate to generate
value. Unlike non-cooperative games we’ve studied previously, the focus here is on coalition formation and
fair allocation of the resulting value, rather than strategic behavior.

2 Examples of Cooperative Games

2.1 Voting Game

In a voting game, each player i has a weight wi ∈ N and there is a threshold q > 1
2

∑
i wi. For a coalition S,

v(S) = 1 if
∑

i∈S wi ≥ q, otherwise v(S) = 0.

2.1.1 Parliament Bill Example

Consider a scenario where we are analyzing whether a bill will pass through parliament. Suppose there are
N total members in parliament. In this context, for a bill to pass, a coalition of parties must collectively
represent at least a certain percentage of the total parliament—denoted by the threshold q.

Each party i is assigned a weight wi, which corresponds to the number of members it has in parliament.
Thus, a coalition’s total power is the sum of its members’ weights, and it can pass a bill if this sum meets
or exceeds q.

For example, let’s suppose we have three parties:

• Blue Party: 1
2 of parliament

• Orange Party: 1
3 of parliament

• Green Party: 1
6 of parliament

Suppose the threshold for passing a bill is set to q = 5
6

Then, we observe:

• The grand coalition (blue + orange + green) succeeds.

• The blue + orange coalition also meets the threshold.

• All other coalitions fail to reach the threshold and thus have value 0.



2.1.2 Induced Subgame Graph Example

Players are nodes in an undirected, weighted graph. The value of a coalition is the total weight of the edges
in its induced subgraph.

1 2

2 1

3 1

1 3 2

2 1 3

v(S) = 11

1 2

2 1

3 1

1 3 2

2 1 3

v(S) = 5

1 2

2 1

3 1

1 3 2

2 1 3

v(S) = 0

1 2

2 1

3 1

1 3 2

2 1 3

v(S) = 22

Figure 1: Four different examples for induced subgame and their corresponding v(S).

In these graphs, we make the following observations:

• In the blue graph on the left, the coalition consists of the nodes in blue. The edges that we include
then are the thicker edges, formed between two blue nodes. The value of this coalition is 1 + 1 + 2 +
3 + 1 + 3 = 11.

• On the orange graph, we have a value of 2 + 3 = 5.

• For the green graph, we have a value of 0, since there are no edges between any of the green nodes.

• Finally, for the yellow graph, this is the grand coalition, so we include all the edges of total weight 22.

2.1.3 Taxi Fare Game

Let’s say we have a group of students who are all leaving the SEC (in yellow) and want to go to various
destinations. They would ideally like to share a taxi with at least some of the others. Assume for simplicity
that a taxi costs $1 per minute. There is a common source x and a desitnation yi for each palyer i. The
value of a coalition S is max{0,

∑
i∈S c(x, yi) − c(x, S)}, where c(x, S) is the shortest travel time from s

to ∪i∈S{yi}. More intuitively, the first component
∑

i∈S c(x, yi) refers to the total time if they all took
separate taxis which we subtract c(x, S) from. The reason that we take the max compared to zero is because
sometimes, it does not make sense for two people to share a taxi. For example, if two people are going in
completely opposite directions, it would take more time for one taxi to go all the way in one direction and
then go all the way back plus some in the other direction to drop the second person off, compared to both
people taking their own individual taxis. In this case, we won’t force them to share and will instead just
have them take their own taxis.

3 Superadditive Games

Definition 2. A cooperative game is superadditive if for every pair of disjoint coalitions S, T, v(S ∪ T ) ≥
v(S) + v(T ).

If the game is superadditive, it is rational for the grand coalition to form, since more collaboration never
hurts in superadditive games. Thus, in superadditive games, we focus simply on how to divide the payoffs
and not on which coalition structures to form.

Which of the games from above are superadditive?

• The voting game is superadditive. If the union of 2 coalitions exceeds the threshold and has value
1, then either 0 or at most 1 of the individual coalitions can be greater than the threshold. We can’t
have both exceed the threshold, since the threshold is at least more than half of the weight, so we can’t
have two disjoint thresholds that are each more than half of the weight. In the other case, where the
union has value 0, then both of the individual coalition must also have value 0.
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• The induced subgraph is also superadditive. With the induced subgraph, when we combine two coali-
tions, we are getting all of the edges that are there before and we might also get more vertices if new
edges are formed between included nodes.

• The taxi fare game is not superadditive. Let’s say we have two people going to the east, but we
have one person going to the west. The two people going to the east might have a positive value, since
they are saving time overall by commuting together. However, if the person going to the west is going
super far west, then if we put them all into one coalition, then this extra effort might cancel out the
efficiency gains made by having the two people going to the east commuting together.

3.1 Supermodular Games

Definition 3. A cooperative game is supermodular if for all S ⊆ T ⊆ N and i ∈ N \T, v(S∪{i})−v(S) ≤
v(T ∪ {i})− v(T ).

We can use similar arguments from above to show that voting is not supermodular but induced subgraph
is.

4 Payoff Divisions

Given a cooperative game (N, v), a payoff division is a vector p ∈ (R+)n, where pi is the payoff of player
i, such that

∑
i∈N pi = v(N). This assumes that the grand coalitions has formed. How can we construct

formal definitions for what a ”reasonable” or ”stable” payoff division looks like?

4.1 Shapley Value

Given a permutation π over N , let Si
π be the coalition that consists of the prefix of π up to (and excluding)

i. What matters here is the coalition that is formed by taking the players in the permutation before i, not
the order itself.

Definition 4. The Shapley value of player i is

σi(N, v) =
1

n!

∑
π

[v(Si
π ∪ {i})− v(Si

π))].

Here, we are summing over all the orders of the player to understand how much value player i contributes
to the coalition of Si

π, which is the marginal contribution of player i to the prefixed coalition. We then average
over all possible permutations to get an expected marginal contribution from i.

The vector of Shapley values is a valid payoff division, because∑
i∈N

σi(N, v) =
1

n!

∑
π

∑
i∈N

[v(Si
π ∪ {i})− v(Si

π))]

=
1

n!

∑
π

v(N) = v(N)

We are able to make this jump because the RHS of the top equation forms a telescopic sum, where
everything cancels out, except for a subtraction between the value of grand coalition and the value of the
empty set. Then, the value of the grand coalitions for each permutation is the same, as order does not
matter, so the average of these identical values is just the avlue of the grand coalition itself.

4.2 Axiomatization

When is a payoff division rule ϕ(N, v) ”reasonable”? We can define the following axioms:

• Symmetry: If i, j ∈ N are such that for all S ⊆ N \ {i, j}, v(S ∪ {i}) = v(S ∪ {j}), then ϕi(N, v) =
ϕj(N, v). If the two players induce identical values then we should get identical payoffs.
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• Null player: If i ∈ N is such that for all S ⊆ N \ {i}, v(S ∪ {i}) = v(S), then ϕi(N, v) = 0. If you
never contribute anything, then you should get zero payoffs. We can determine this by seeing if the
value of the coalition every changes but adding the specified player.

• Additivity: For two value functions v1, v2 : 2N → R+, it holds that ϕi(N, v1 + v2) = ϕi(N, v1) +
ϕi(N, v2) for all i ∈ N , where the game (N, v1 + v2) is defined by (v1 + v2)(S) = v1(S) + v2(S) If you
take two value functions and you look at the game that is induced by summing up the value functions,
then the Shapley values shold be the sum of the Shapley values in the original games. This property
is not as necessary to satisfy as the first two, but is still a relatively reasonable expectation.

Theorem 1. The Shapley value is the unique payoff division rule that satisfies symmetry, null player, and
additivity.

This result should be immediate for the null player, and can be derived more generally as well.

4.2.1 The Core

In cooperative game theory, we aim to find payoff divisions that are stable, meaning no subset of players has
an incentive to break away from the grand coalition.

Definition 5. The core of a game (N, v) is the set of payoff vectors p such that for all S ⊆ N ,∑
i∈S

pi ≥ v(S)

This ensures that every coalition receives at least what it could obtain on its own. Each player has
one constraint that acts as a lower bound and one that acts as an upper bound. The intersection of these
six constraints—corresponding to the six nontrivial coalitions—forms one region which satisfies all coalition
constraints and lies in the core.

Example 1. Consider a weighted voting game with three players, where wi = 1 for all i, and the threshold
q = 2. Then,

v({i, j}) = 1 for any pair {i, j}

Suppose, without loss of generality, that p1 > 0. Then the combined payoff to players 2 and 3 is p2 + p3 =
1 − p1 < 1 = v({2, 3}). So players 2 and 3 would have an incentive to form their own coalition. The same
reasoning applies for any player receiving a positive payoff. Therefore, the core is empty, and there are no
payoff divisions that satisfy the core constraints for this game.

However, we do have a reassuring theorem for supermodular games:

Theorem 2. In any supermodular (also called convex) game, the core is nonempty and contains the Shapley
value.

4.2.2 The Least Core

To help avoid the empty cores, we can define the least core, a feasible relaxation of the core.
The least core is the set of payoff divisions p arising from the (large) linear program:

min ϵ

s.t. ∀S ⊆ N,
∑
i∈S

pi ≥ v(S)− ϵ∑
i∈N

pi = v(N)

∀i ∈ N, pi ≥ 0

ϵ ≥ 0
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5 Feature Attribution

How does this all relate to AI? There is a hot field in AI called interpretability, where we want to understand
how black-box models make predictions or computations.

The Shapley value was a concept originally known only within cooperative game theory, until it gained
widespread popularity in the AI community following a 2017 NeurIPS paper. It has since become one of the
most well-known and widely used methods for interpreting complex models.

Here is an example of how the Shapley value is useful for interpretability:
Given a machine learning model f : Rd → R and a point x ∈ Rd, what is the influence of each feature in

x on the model’s prediction f(x)?
For example, we might have a model trained to predict whether individuals have income greater than

$50k based on U.S. census data, as demonstrated by Chen et al. (2022). The input features might include
age, education level, marital status, and hours worked per week. We want to quantify the contribution of
each feature to the model’s output.

In this setup, the model output f(x) is a real number that we interpret in the exponent: the actual
predicted probability is ef(x). This means a lower value of f(x) corresponds to a lower predicted probability.
For example, if f(x) = −2, the predicted probability is approximately 1

e2 ≈ 0.135.
The Shapley value allows us to assign a numerical value to each feature’s contribution, capturing how

much each one ”pushes” the model’s prediction up or down. These contributions are computed by considering
all possible coalitions (subsets of features) and averaging marginal contributions, similar to cooperative game
theory.

We can plot Shapley values along a line, while also specifying a baseline represents the model’s prediction
if no features are known (i.e., the expected output over all data points). Each feature then either pushes the
prediction to the right (increasing the model’s output) or to the left (decreasing it).

Items that fall to the left of the baseline represent features that increase the prediction f(x), or push the
prediction toward the right.

Items that fall to the right of the baseline represent features that decrease the prediction, or push the
prediction toward the left.

The further to the right or left a feature pushes, the more influential it is in the model’s final decision.
Thus, this kind of visualization gives a clear and intuitive sense of which features matter most and in which
direction they are influencing the output. f here could have been arbitrarily complicated, but this Shapley
value representation gives us insight into the impacts of the features. The size of the bars is a function of
the particular x.

5.1 From ML to Cooperative Games

Definition 6. Given a model f : Rd → R and a point x, define a cooperative game:

• The players are the d features

• v(S) = f(xs), where xs is x with the features in N \ S ”removed”

Now, we can compute the Shapley value of the features.

5.1.1 Removing Features

When computing Shapley values, we need to evaluate the model on subsets of features. But if some features
are removed, we still need to complete the input so that the model can make a prediction. There are different
ways to do this, and each leads to a slightly different version of the game we’re playing.
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Different strategies for filling in missing features when evaluating v(S).

In the top half of the figure, we remove features 3 and 4 and fill them in with a fixed baseline. here, the
values [9, 9], which represent noise or neutral defaults. This gives a completed input like [3, 8, 9, 9], which
the model can evaluate directly. This approach is simple, but the result may be artificial depending on the
choice of baseline.

In the bottom half, we instead use a dataset of real examples (the new baselines) to fill in the missing
features. There are two common approaches:

• Marginal: Sample values for the missing features from the dataset, ignoring the values of the preserved
ones. This is easy to implement but may break dependencies in the data.

• Conditional: Sample only from rows where the preserved features match the ones in x, and use their
corresponding values to complete the input. This better respects correlations in the data but may have
limited matches.

Each of these methods defines a slightly different cooperative game and produces different Shapley values.
There’s ongoing discussion about which is best, but many approaches are reasonable and widely used in
practice.
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