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Social Networks 1: Cascade Models

Lecture 17

In this lecture, we introduce cascade models in social networks, which describe how ideas or behaviors
spread through populations. Understanding cascade dynamics helps explain real-world phenomena, such
as political movements gaining momentum, rapid adoption of technological innovations, or viral success of
new products. Typically, cascades start from a small set of early adopters and propagate through social
connections, influencing individuals across the network. Our goal is to study these processes to predict
diffusion patterns and effectively encourage or analyze the spread of behaviors within society.

We will first introduce coordination games on graphs, characterizing their pure Nash equilibria using
the concept of cohesiveness. Next, we study a progressive cascade model, proving conditions under which
contagion occurs. Finally, we explore contagion thresholds in infinite graphs.

1 Coordination Games

Consider an undirected, connected graph G = (V, E), with a set of players V = {1,...,n}. Each player
i € V chooses an action a; € {0, 1}, forming an action profile a = (ay,...,a,).

Let N; denote the neighborhood of player i, and let the degree of player i be d; = |N;|. For b € {0,1},
denote by n; ;(a_;) the number of neighbors of player i choosing action b. Given a parameter ¢ € [0, 1], the
utility for player ¢ is defined as:

ui(a) — {(1 - q) : ni,l(a—i)7 if a; = 17

q- mvo(a_i), lf a; = 0

We first consider simultaneous-move coordination games. The best response of player i is to choose action
a; = 1 if and only if at least a g-fraction of neighbors choose action 1. Formally, player i’s best response is
1 if and only if

0<(1—=q) nia(am) —q-niolas) =ni1(a=) —q-di.
Poll 1: How many pure Nash equilibria are guaranteed to exist in a coordination game?

Answer: Two equilibria always exist.

Proof. We will show that there are always at least two pure-strategy Nash equilibria in any coordination
game defined as above. Consider two action profiles:

1. The profile where every player chooses a; = 1: Here, each player has all neighbors choosing action 1,
trivially satisfying the best-response condition n;1(a_;) = d; > qd;.

2. The profile where every player chooses a; = 0: Similarly, each player sees all neighbors choosing action
0, and thus no player exceeds the threshold gd; to switch to action 1. Hence, action 0 is a best response
for all players.

Now, let’s discuss why there are not necessarily three equilibria. Suppose we consider any third equilib-
rium. This would require some subset of players choosing 1 and another subset choosing 0 simultaneously.
However, such an intermediate equilibrium is not guaranteed to exist for all graphs or all choices of ¢, be-
cause intermediate profiles strongly depend on graph structure and threshold ¢. Thus, only the two extreme
equilibria (“all zeros” and “all ones”) are guaranteed in general.

We conclude that at least these two equilibria exist, and the answer to the poll is indeed “2”. O



1.1 Coordination Games: Example

Consider the following graph, illustrating a Nash equilibrium for ¢ = 1/2:

o
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1.2 Cohesiveness: Characterization of Equilibria

The cohesiveness of a set L C V in graph G measures how tightly connected the nodes in L are. Formally:

cohg (L) = min ( (1)
By convention, we define cohg(0) = 1.
In the previous example, consider the set L comprising the nodes playing action 1 (blue nodes). The
cohesiveness is calculated as:
cohg(L) =1/2
by considering the rightmost blue node. This means every player in L has at least half their neighbors within
the set L:

cohg(L) =1/2

Thus, cohesiveness provides a useful characterization of Nash equilibria in coordination games, indicating
stable action profiles where players have no incentive to deviate.

Theorem 1. An action profile a is a pure-strategy Nash equilibrium if and only if the sets
Xo={ieV:a;=0} and Xi={ieV:aq; =1}

satisfy
cohc(Xo) >1—q and coha(X1) > q.

Proof. Consider players in X;. Their choice of action 1 is a best response if and only if at least a fraction ¢
of their neighbors also choose action 1. Formally, for each player ¢ € X;:
N
minxl .,
| Vi
Similarly, a symmetric argument applies to players in Xg. Each player in Xy chooses action 0 as a best
response if and only if at least a fraction 1 — ¢ of their neighbors also choose action 0:

N;NX
| il O| >1-— q.
| Vil
Thus, the cohesiveness conditions exactly characterize pure-strategy Nash equilibria. O



2 Cascade Model

We now consider a progressive cascade model, where initially a subset of nodes (called seeds) adopt action 1,
while all others start with action 0. This process is progressive, meaning that nodes can only switch from
action 0 to action 1, and never back.

We introduce the following terminology:

e A player currently playing action 1 is called active.
e A player switching from action 0 to action 1 is said to be activated.

The cascade evolves in discrete rounds. In each round, every inactive player who has at least a fraction
q of active neighbors becomes activated and thus switches to action 1.

Consider an example of the cascade model with threshold ¢ = 1/3. We illustrate how activation propa-
gates through the network:

e Round 1: Initially, one node (seed) is active, and all other nodes are inactive.
e Round 2: Nodes having at least 1/3 of neighbors active become activated.

e Round 3-5: Activation progressively spreads as each inactive node reaches the threshold due to previ-
ously activated neighbors.

e Round 6: Eventually, all nodes become active, demonstrating full contagion (every agent is active)
through the network.
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Round 1 Round 2 Round 3
Round 4 Round 5 Round 6

2.1 Contagion

We say contagion occurs if eventually every agent in the network becomes active.
Theorem 2. A seed set S causes contagion in a graph G if and only if cohg(L) < 1—gq, for every L C V'\S.
Proof. We prove both directions explicitly:

(=) Suppose that the seed set S causes contagion. Assume for contradiction that there exists a subset
L CV\ S such that cohg(L) > 1 — ¢q. By definition of cohesiveness, this implies that each node in L
has strictly more than a fraction 1 — g of its neighbors within L, and therefore fewer than a fraction ¢
neighbors outside L. Thus, no node in L can ever meet the threshold of active neighbors to become
activated first. This contradicts the assumption of contagion. Therefore, we must have cohg(L) < 1—¢
for every subset L C V' \ S.



(<) Suppose that cohg(L) < 1 — ¢ for every L C V' \ S. Consider any intermediate step of the cascade
where some nodes remain inactive. Let Xo C V \ S be the set of currently inactive nodes. Since
cohg(Xp) < 1—g, there exists at least one node in X, that has at most a fraction 1— ¢ of its neighbors
still inactive, hence at least a fraction q of its neighbors are active. Thus, this node meets the activation
threshold and becomes activated in this round. Consequently, the activation process continues at every
step until no inactive node remains, resulting in full contagion.

This completes the proof. O

Consider the following example, with an initial seed node colored blue (action 1): The subset L, high-
lighted below, has cohesiveness: cohg(L) = 2/3, and no subset of V' \ S has higher cohesiveness. Thus,
contagion will occur starting from this single seed if and only if: ¢ < 1/3. If ¢ > 1/3, contagion does not
fully propagate through the network.

cohg(L) = 2

o

!

2.2 Infinite Graphs

We now extend our analysis to infinite graphs. Assume the set of nodes V is countably infinite and the
degree of each node d; is bounded.

A finite set of seeds S C V is called contagious if contagion occurs, meaning eventually all nodes become
active starting from this set. Intuitively, contagion becomes easier as the threshold ¢ is small. Thus, we define
the contagion threshold of a graph G as the maximum value of ¢ for which there exists a finite contagious
set:

contagion threshold of G = max{q : 3 finite contagious set}.

We consider two examples of infinite graphs to understand contagion thresholds clearly.

2.2.1 Example 1: Infinite Path

Consider an infinite path graph where each node has exactly two neighbors (except the ends, which extend
infinitely).

O—CO0——C0—~0O0—0—~0C—0

Poll 2: What is the contagion threshold of G7

Answer: %

Proof. In an infinite path, each internal node has degree d; = 2. To initiate contagion from a finite seed set,
at least one node must become activated initially. This requires at least half of its neighbors to be active,
hence g < % Indeed, starting with a single node active, activation spreads sequentially to adjacent nodes as
each inactive node encounters exactly half (1 out of 2) neighbors active.

If ¢ > %, then no finite set can trigger contagion, as initially, the node next to the leftmost seed always
sees at most half their neighbors active, not strictly greater. Thus, the contagion threshold is exactly % O



2.2.2 Example 2: Infinite Grid (2-dimensional lattice)

Now, consider an infinite 2-dimensional lattice graph (infinite grid). Each node has exactly four neighbors.

Poll 3: What is the contagion threshold of G7

1
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Proof. Each node in the infinite grid has 4 neighbors. A node becomes active when at least ¢ - 4 of its
neighbors are active. Consider the following:

e When q = i, a single active neighbor (since i -4 = 1) is sufficient to eventually trigger the activation of
a neighboring node. By arbitrarily selecting an appropriate seed node set (for example, a single node
or a small cluster), the activation will spread outward.

o Ifg> i, then a node would require at least 2 active neighbors (because ¢-4 > 1) to activate. Imagine
a rectangle around the set of seeds. The contagion cannot expand beyond this rectangle because nodes
on the boundary will not reach the higher activation requirement.

Thus, the maximum value of ¢ that allows a finite seed to cause infinite contagion is ¢ = %. This proves
that the contagion threshold for the infinite 2D grid is exactly i. O

Contagion Threshold

We have seen an example of a graph whose contagion threshold is % A natural question arises:
Does there exist a graph with contagion threshold > % ?

The following theorem provides a negative answer.
Theorem 3. The contagion threshold of any graph G is at most %

Proof. Let q > % and a finite seed set S C V. Furthermore, let S; denote the set of active nodes at the end
of round j. For any set X C V, define

0(X) ={(uy,v) e E | ueX, v¢ X} (the boundary of X).

We prove that if S;_1 # S;, then [6(S;)| < |0(Sj-1)]. To see why, consider a newly activated node
i € 5;\ S;—1. By assumption, i was activated when it observed that more than half of its neighbors (because
q > %) were already in S;_q. Hence, ¢ has strictly more edges going into S;_1 than into V' \ 5;. As a
result, when ¢ is added to the active set, the total boundary §(S;) decreases by at least one edge compared

to (5(5},1).



Because 0(S) for a finite set S is finite, and each round strictly reduces the boundary size whenever
new nodes join, we cannot keep activating new nodes indefinitely (the boundary cannot shrink below zero).
Hence, the process must stabilize at a finite set of active nodes. O
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