Harvard CS 1360, Spring 2025
Instructor: Ariel Procaccia

EEI]NI]MI SEEMFI.ITATII]N Scribe: Rhea Acharya

Fair Division 3: Indivisible Goods

Lecture 12

1 Introduction

An indivisible goods allocation problem involves:
e A set G of m indivisible goods.
o A set of players N = {1,...,n}.
e Valuations V; for each player, where valuations are additive unless stated otherwise.
e Valuations are additive if for all S C G and i € N, V;(5) = >_ 5 Vi(9)
e An allocation is a partition of the goods, denoted A = (Ay,...,A4,)

The core challenge with indivisible goods is that envy-freeness and proportionality are generally infeasible.
Unlike divisible settings (like cake cutting), we cannot simply divide each good to ensure everyone gets their
proportional share.

Note for practical application: Allocation of indivisible goods appears in many real-world sce-
narios: dividing inheritance items among heirs, allocating tasks among team members, assigning
dormitory rooms to students, and distributing computing resources in data centers. The fundamen-
tal challenge is that we often cannot achieve perfect fairness, so we need to explore approximations
that maintain some fairness properties.

2 Maximin Share Guarantee

2.1 Definition
The Maximin Share (MMS) guarantee of player i is given by:

max_ min V;(X;) (1)
10 Xn J
Intuitively, the MMS of player i represents the maximum value they could guarantee themselves if they

were to partition goods into n bundles and then receive the worst bundle (i.e., ”you cut, adversary chooses”).
An MMS allocation ensures that V;(A;) > MMS guarantee for all i € N.

Intuition: Think of the Maximin Share guarantee as answering the question: "What’s the best I
could do if I had to divide the items into n piles, knowing I'll get the least valuable pile?” It captures
a concept of fairness that’s weaker than proportionality but can often be achieved with indivisible
goods. The intuition comes from imagining you're dividing a set of items among people, including
yourself, but you know you’ll be the last to choose.

2.2 Existence Theorems

e For n =2, an MMS allocation always exists.

e Theorem: For n > 3, there exist additive valuation functions that do not admit an MMS allocation.

Counterexample Construction

Let us examine a counterexample for n = 3 players showing that MMS allocations do not always exist.
Before we even define any values, we will start with a weird combinatorial construction:

17125 |12 | 1
2 122] 3 |28
11 0 | 21|23

Now, we claim that there are exactly 3 ways of dividing these numbers into 3 subsets of 4 numbers each such
that the number in each subset adds up to 55. The total sum of the whole grid is 165.
Specifically, we can divide it into the following 3 configurations:

17 125 | 12 | 1 17 125 [12 | 1 17 125 |12 | 1
2 122 3 |28 2 122 3 |28 2 122 3 |28
11| 0 | 21| 23 111 0 | 21 | 23 11 | 0 | 21 | 23

One can verify that each subset of 4 numbers within the grid (which are colored a specific color) add up
to 55. No other partitions of this particular grid exist that satisfy the equal groups adding up to an equal
sum property.

With this in mind, we will present our counterexample. We have 12 goods with values determined by
three components:

1 1 1 1 17 25 12 1
1 1 1 1| x10%+]| 2 22 3 28 | x10®+ player-specific perturbations (2)
L1 11 11 0 2123 small adjustments

base valuation second-order values

Each player’s valuation function is:
Vi(g) = 10° - (base value) + 103 - (second-order value) + (player-specific perturbation)

The player-specific perturbation matrices are:

31-1]-1]-1 31-110/0 3/0|-1]0

00|00 -110 0|0 0/0|-1]0

00|00 -110 (0|0 000]-1
Table 1: Player One Table 2: Player Two Table 3: Player Three

To explain how these valuations work, let us consider the good that corresponds to the top right corner
of the matrix:

E|F|G|H
I1J|K|L

Then, we can use the equation to determine each of the players will value the good as follows:
e Player 1: 1-10°+1-10% -1
e Player 2: 1-10°4+1-10>+0

e Player 3: 1-105+1-103 40

We see that first two parts of the calculation are the same; the players only differ in the final perturbation
value. Since the magnitude of the first two components is scaled up so much, the valuations are broadly
similar but just different at the end.

Note how this mirrors the construct of the three equal partitions from the initial fair division construction.
Each of the partitions maps to one of these player’s perturbation matrices, such that within that partition
the perturbations values of the subsets all sum to 0.

We claim that the maximin share of each player is 4,055,000. Each player can achieve this by dividing
the goods according the partition shown in their perturbation matrix; for each bundle, the total value will
be 4,000,000+ 55,000+ 0 = 4, 055,000, as the numbers in the second matrix add up to 55, and the numbers
in the third matrix add up to 0.

But it is impossible to guarantee a value of 4,055,000 to all players simultaneously. Indeed, since the
magnitudes of the differences are so different between the components of the valuation calculation, we want
each stage to be split equally, as we will not be able to make up for substantial differences in later stages.
Thus, for each player, the base valuation of these four goods will sum to be 4 - 10%. Since all of the cells
are the same in this matrix, we can split it any way we want (into 3 groups of 4) and the valuation will be
equal. Then, since the second-order values parallel the original matrix, these component’s values will sum
to 55 - 103. So we will have to split according to one of the special partitions, which we have colored earlier.
Finally, the sum of all perturbation values for each player is zero, so in an ideal partition, the perturbation
component would contribute 0 to each player’s total.

But here’s the problem. Let’s say we pick the partition corresponding to player one’s perturbation matrix.
For the pink and the yellow subsets (corresponding to the second and third rows), both player 2 and 3 have
a perturbation sum of -1 for those two rows. For the top row, they both have a sum of 2 for these rows.
This means that even if we assign player 1 to rows 2 or 3 (since all the rows have an equal perturbation sum
for them), then at least one of player 2 or player 3 will also have to have one of these ”suboptimal” rows,
resulting in a total valuation of 4,054,999 for them, which is below the maximin share guarantee. A similar
tension results if we pick the partition of player 2 or player 3, where we find that one of the other two players
can’t get their maximin share guarantee.

e)

Note for in practice: The notion of Maximin guarantees only came about in the 2010’s and it took
about 4 years to get to this counterexample. In practice, maximin share guarantee is usually feasible,
but it’s not something that you can guarantee theoretically, as a hard fairness guarantee.

Later work has shown that we can always find allocations that provide each player at least % of
their MMS, and in many realistic settings, full MMS allocations do exist. This is a pattern we often
see: theoretical worst-case results might be negative, but practical instances tend to behave much
better.

3 Approximate Envy-Freeness

Since perfect envy-freeness can be impossible with indivisible items, we focus on approximate notions. We
first assume general monotonic valuations, meaning for all S C T C G and ¢ € N, V;(S) < V;(T).
An allocation (Ay,...,A,) is Envy-Free up to one good (EF1) if:
Vi,j € N,3g € A; such that V;(4;) > Vi(4,\ {g}) (3)

~ '

Note: We can read this expression as saying that there is always a good, which we will call g, in the
bundle of player j such that if we remove it from A;, then ¢ is no longer envious. In simple terms: "I
might envy what you have, but if you remove your best item, I’d be satisfied with my allocation.”

This is a natural relaxation of envy-freeness for indivisible goods - it captures the intuition that
small differences shouldn’t matter too much. In practice, it’s often sufficient for maintaining social
harmony, as people tend to be willing to overlook minor discrepancies.

\. J

Theorem: An EF1 allocation always exists and can be computed in polynomial time, even under very
loose assumptions about the valuation functions.

To prove this theorem, we work with partial allocations and examine the structure of the resulting envy
graphs.

3.1 Envy Graphs and EF1 Allocations

We have a partial allocation A of the goods, which is where only a subset of the goods have been allocated.
From this allocation A, we can construct an envy graph, where we draw directed edges from (i, j) if i envies
4. This graph shows which players are envious of which other players. Formally, we say that this envy graph
can be denoted as (NN, E), where N is the set of nodes that represent the players and FE is the set of directed
edges that indicate the presence of envy between two players.

Lemma: An EF1 partial allocation A can be transformed in polynomial time into an EF1 partial
allocation B of the same goods with an acyclic envy graph.

Proof. The proof works by showing that we can eliminate cycles in the envy graph while maintaining the
EF'1 property.

If the envy graph has a cycle C, we shift allocations along C' to obtain a new allocation A’. Specifically, if
there is a cycle (i1, iz, . .., ik, 11) where each player envies the next player in the cycle, we can reassign bundles
so that player i; gets the bundle previously held by player i;;1, and player i; gets the bundle previously
held by player 4.

This shifting process clearly maintains the EF1 property because we’re just performing a permutation of
the bundles among a subset of players, and the value players have for their own bundles can only increase.

The key insight is that the number of edges in the envy graph of A’ decreases:

e Edges between N \ C (players not in the cycle) remain the same. This is because players outside the
cycle keep their bundles and valuations unchanged, so their envy relationships with each other don’t
change.

e Edges from N \ C to C shift but their count stays the same. This is because outside players still envy
the same bundles, but those bundles now belong to different players. The envy follows the bundles, so
the total number of these edges stays constant.

e Edges from C to N \ C can only decrease (because players in C' now have bundles they valued more
before). This is because cycle players get better bundles after the permutation, so they may envy
fewer outside players. Their increased satisfaction means they won’t develop new envy toward outside
players

e Most importantly, edges inside the cycle C' must decrease by at least one, because every player in the
cycle receives a strictly more preferred bundle (as the cycle was structured based on cyclical envy,
where each player envied the bundle of the next)

By iteratively removing cycles this way, we arrive at an acyclic envy graph while maintaining the EF1
property. O]

Given the above lemma, we can now complete the proof of the main theorem:
Proof of Theorem. We use an incremental approach:

1. Start with an empty allocation where each player has received nothing. This trivially satisfies EF1 and
has an acyclic envy graph.

2. In round 1, allocate good ¢; to an arbitrary player. The envy graph remains acyclic (possibly with
some edges now), and the allocation is EF1.

3. Suppose goods g1, ...,grk—1 are allocated in an acyclic and EF1 allocation A.

4. To allocate good g, find a source ¢ in the envy graph (a player that no one envies, which must exist
because the graph is acyclic).

5. Give gi to player 4, resulting in allocation B.

6. For any player j # i, we have Vj(B;) = V;(4;) > V;(A;) = V;(B; \ {gr}), so the allocation remains
EF1.

7. If new cycles appear in the envy graph, use the lemma to eliminate them.

This algorithm terminates after allocating all goods and yields an EF1 allocation. O

Algorithm insight: The beauty of this algorithm is that it always gives the next item to someone
who isn’t currently envied by anyone. This is a clever approach because it ensures we won’t create
too much new envy with each allocation step. The process of selecting a ”source” player in the acyclic
envy graph guarantees that we’re maintaining balance in how desirable the bundles are.

The cycle elimination procedure is similar to techniques used in matching markets and trade
networks, where cycles of desire (or envy) can be resolved by appropriate reassignments.

4 Round-Robin and Efficiency

4.1 Simple EF1 Mechanisms

When we return to the case of additive valuations, proving the existence of an EF1 allocation becomes much
simpler. In fact, we can use a simple round-robin procedure:

e Order the players arbitrarily: 1,2,...,n

e In rounds r = 1,2,. .., player (r mod n) picks their favorite remaining good

This round-robin allocation always ensures an EF1 allocation. The intuition is that player ¢ cannot envy
player j by more than one good, since if j chose before ¢ in one round, ¢ will choose before j in the next
round.

Within each phase, we will ensure EF1 allocation, and then since the valuations are additive, we can
extend the claims across rounds.

Real-world application: The round-robin procedure is widely used in practice due to its simplicity
and transparency. Examples include fantasy sports drafts, allocating dormitory rooms in colleges,
and even children taking turns selecting toys. Its fairness guarantees (specifically EF1) provide a
theoretical justification for why this procedure feels fair to participants.

However, round-robin does not guarantee Pareto efficiency, meaning there could be alternative
allocations where some players are better off without making others worse off.

4.2 Efficiency and Fairness
An allocation A is Pareto efficient if there is no allocation A’ such that V;(A}) > V;(A;) for all i € N, and
V;i(A%) > Vi(Aj) for some j € N.

In other words, we can’t make anyone better off without making someone else worse off.

Between round-robin allocation and maximizing utilitarian social welfare (sum of all values), which is
Pareto efficient?

e Round-robin: Not necessarily Pareto efficient

— Players make myopic choices optimizing only their current pick
— Prevents mutually beneficial trades between players

— Example: For two players with values (1,1) and (1, 0) for items a and b, round-robin might assign
a to player 1 and b to player 2, but swapping benefits player 2 without harming player 1. (There
are also examples where both players strictly benefit.)

e Max utilitarian social welfare: Always Pareto efficient but may be highly unfair

— By contradiction: Any Pareto improvement would increase the sum of values
— Since we maximize this sum, no Pareto improvement can exist
— However, may assign all items to one player with marginally higher valuations

So, can we have the best of both worlds? Yes, using the Maximum Nash Welfare! Read on to learn more
about this allocation rule.

4.3 Maximum Nash Welfare

The Nash welfare of an allocation A is the product of values:

NW(4) = J] vi(4:) (4)

The maximum Nash welfare (MNW) solution chooses an allocation that maximizes the Nash welfare.

Theorem: Assuming additive valuations, the MNW solution is both EF1 and Pareto efficient.

Here we see we can have both fairness and efficiency simultaneously. The MNW solution provides a
principled way to make fairness-efficiency tradeoffs by maximizing the geometric mean of players’ values.

In the case of divisible goods, we can also see that maximizing the product coincides with other notions
that are intuitively envy-free.

Intuition for Nash welfare: Nash welfare is particularly sensitive to inequality - if any player
gets very little value, the product becomes small. This makes it balance both efficiency (high total
welfare) and fairness (relatively equal distribution).

The logarithm of Nash welfare equals the sum of logarithms of individual utilities, which aligns
with maximizing utilities on a logarithmic scale - a concept familiar in economics for modeling di-
minishing marginal utility.

While computing the exact MNW solution is NP-hard, approximation algorithms exist and work
reasonably well in practice, as shown by Caragiannis et al. (2016). Their experiments demonstrate
that computing MNW is feasible for problems with up to 50 players in reasonable time.

4.4 Practical Implementation

Spliddit (spliddit.org) — which Prof. Procaccia created! — is a website that implements these algorithms
to help people divide goods fairly. These platforms allow users to express their values for items and then
compute provably fair allocations. The algorithms discussed here have direct real-world applications in
inheritance division, resource allocation, and task assignment scenarios. You should use it if you ever have
to divide up rooms & rent between roommates!

5 Open Problems
5.1 Envy-Free up to Any Good (EFX)
An allocation Ay, ..., A, is envy-free up to any good (EFX) if and only if:
Vi,j € N,Vg € A;, Vi(Ai) > Vi(4;\ {g}) ()

This is strictly stronger than EF1 and strictly weaker than perfect envy-freeness (EF). The key difference
from EF1 is that EFX requires no envy after removing any good from the envied bundle, not just a carefully
chosen one.

Research frontier: EFX is currently one of the most intriguing open problems in fair division. We
know:

e An EFX allocation exists for two players with monotonic valuations (relatively easy proof)

e An EFX allocation exists for three players with additive valuations (proved in 2019-2020, with
a complex argument, and proved more recently in a slightly simpler way)

e For n > 4 players with additive valuations, the existence of EFX allocations remains an open
problem. Prof. Procaccia thinks this is the biggest open problem in fair division — a problem
that is so easy state but so hard to solve.

The fact that we can’t even prove or disprove the existence of EFX allocations for just 4 players
makes this an exciting research frontier! Some various approximations and partial results have already
been discovered towards a solution.

	Introduction
	Maximin Share Guarantee
	Definition
	Existence Theorems

	Approximate Envy-Freeness
	Envy Graphs and EF1 Allocations

	Round-Robin and Efficiency
	Simple EF1 Mechanisms
	Efficiency and Fairness
	Maximum Nash Welfare
	Practical Implementation

	Open Problems
	Envy-Free up to Any Good (EFX)

