
CS 1360 Spring 2025
Midterm Exam (Practice)

Problem 1: Game Theory

1. [10 pts] Provide a definition (using mathematical notation) of best response in a
normal-form game.

Solution: xi is a best response to x−i if for all x
′
i ∈ ∆(S), ui(xi,x−i) ≥ ui(x

′
i,x−i).

2. [15 pts] Consider a 2-player game in normal form, and denote the strategy set of each
player by S. Let B1(x2) denote the set of (possibly mixed) best response strategies of
player 1 to the (possibly mixed) strategy x2 of player 2. For convenience, let us fix
some mixed strategy x⋆

2 for player 2, and denote α = u1(x1, x
⋆
2) for all x1 ∈ B1(x

⋆
2),

that is, α is the maximum utility player 1 can achieve against x⋆
2.

Show that x1 ∈ B1(x
⋆
2) if and only if every pure strategy s ∈ S in the support of x1

(i.e., every pure strategy s such that x1(s) > 0) is itself in B1(x
⋆
2) (i.e., u1(s, x

⋆
2) = α).

Note: Do not forget to show both directions.

Solution: ( =⇒ ) Assume that x1 ∈ B1(x
⋆
2). Then, let s ∈ S be any strategy such

that s ̸∈ B1(x
⋆
2). Assume for the sake of contradiction that x1(s) > 0. Then, since α is

the maximum utility player 1 can achieve against x⋆
2, it must be true that u1(s, x

⋆
2) < α

and also that

u1(x1, x
⋆
2) =

∑
s∈S : x1(s)>0

x1(s)u1(s, x
⋆
2) <

∑
s∈S : x1(s)>0

x1(s)α = α

and so x1 ̸∈ B1(x
⋆
2). However, this is a contradiction, and so it must be true that

x1(s) = 0. Therefore, every pure strategy that is in the support of x1 must itself be in
B1(x

⋆
2).

( ⇐= ) Assume that x1 is a possible mixed strategy such that every pure strategy that
is in the support of x1 is in B1(x

⋆
2). Then, for every s ∈ S such that x1(s) > 0, we

know that u1(s, x
⋆
2) = α and so

u1(x1, x
⋆
2) =

∑
s∈S : x1(s)>0

x1(s)u1(s, x
⋆
2) =

∑
s∈S : x1(s)>0

x1(s)α = α
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and so x1 ∈ B1(x
⋆
2) by definition.

Problem 2: Equilibrium Computation

1. [10 pts] Define (using mathematical notation) the notion of strong Stackelberg equi-
librium (SSE).

Solution: In a strong Stackelberg equilibrium (SSE) the leader plays a mixed strategy
in

argmaxx1∈∆(S)maxs2∈B2(x1)u1(x1, s2)

where ∆(S) is the set of all mixed strategies. The follower plays the corresponding
strategy s2 in the best response set (breaking ties in favor of the leader).

2. [15 pts] Describe a polynomial-time algorithm that computes an SSE in a given Stack-
elberg game.

Note: This was done in class.

Solution: The leader’s mixed strategy is defined by variables x(s1), which give the
probability of playing each strategy s1 ∈ S. For each follower strategy s∗2, we compute
a strategy x for the leader such that playing s∗2 is a best response for the follower, and
under this constraint, x is optimal. This computation is done via the following LP:

max
∑

s1∈S x(s1)u1(s1, s
∗
2)

s.t. ∀s2 ∈ S,
∑

s1∈S x(s1)u2(s1, s
∗
2) ≥

∑
s1∈S x(s1)u2(s1, s2)∑

s1∈S x(s1) = 1

Finally, we take the x resulting from the “best” s∗2.

Problem 3: The Price of Anarchy

1. [10 pts] Describe in words the concept of price of anarchy of a class of games.

Solution: Fixing an objective function and an equilibrium concept for the class of
games, the price of anarchy is the worst-case ratio between the worst objective function
value of an equilibrium of the game, and that of the optimal solution.

2. [15 pts] Assignment 2 introduced scheduling games on related machines. Here we are
interested in scheduling games on unrelated machines. The players N = {1, . . . , n}
are associated with tasks and there is a set M of m machines. Each player chooses a
machine to place their task on, that is, the strategy space of each player is M . The
weights of players (or tasks) are now machine-dependent: player i has weight wiµ on
machine µ. A strategy profile induces an assignment A : N → M of players (or tasks)
to machines. The total load on machine µ is ℓµ =

∑
i∈N : A(i)=µwiµ. The cost of player

i is ℓA(i). Our objective function is the makespan, which is the maximum load on any
machine: cost(A) = maxµ∈M ℓµ.
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Show that for any number of players n ≥ 2, scheduling games on unrelated machines
have an unbounded (i.e., arbitrarily high) price of anarchy.

Solution: Note that there are many correct solutions to this problem. Consider a
case where m = n and

wiµ =

{
1 if i = µ

x if i ̸= µ

for some x ≥ 2. Then, it is clear that the strategy profile A(i) = i for all i = 1, . . . , n
results in the optimal (lowest) cost as cost(A) = 1 since ℓµ = 1 for all µ = 1, . . . ,m.
However, consider the strategy profile B where

B(i) =

{
i+ 1 if i ≤ n− 1

1 if i = n

Here, we have that cost(B) = x because ℓµ = x for all µ = 1, . . . ,m. Further, note
that B is a Nash equilibrium, because if any player unilaterally deviates to a different
machine, their cost will increase from x to x + 1 (if they deviate to machine i) or 2x
(if they deviate to machine j ̸= i). Thus, based on this example of an equilibrium for
this game

PoA ≥ x

1
= x

and since we can set x to be arbitrarily large, it follows that the price of anarchy for
these scheduling games on unrelated machines is unbounded.

Problem 4: The Epistemic Approach to Voting

1. [10 pts] Define (using mathematical notation) the Mallows noise model.

Solution: The Mallows model is parameterized by ϕ ∈ (0, 1]. The probability of a
voter having a ranking σ given the true ranking π is:

Pr[σ | π] = ϕdKT (σ,π)∑
τ ϕ

dKT (τ,π)
.

Here, dKT is the Kendall tau distance, and this is defined as:

dKT (σ, σ
′) = |{(a, b) : a ≻σ b and b ≻σ′ a}|

i.e., the number of pairwise disagreements between the two rankings.

2. [15 pts] Construct a preference profile such that, under the Mallows model with any
value of the parameter ϕ ∈ (0, 1), the ranking given by Borda count (i.e., ranking the
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alternatives by Borda score, breaking ties as you wish) is not a maximum likelihood
estimator for the ground-truth ranking.

Hint: What would Kemeny do?

Solution: First, note that under the Mallows model, we have shown in class that the
MLE of the ground-truth ranking is the ranking given by the Kemeny Rule, i.e. the
ranking π that minimizes the sum of the KT distances with the preference profile:

argminπ

∑
i∈N

dKT (σi, π).

Thus, we must come up with a strategy profile such that the ranking given by Borda
count disagrees with the ranking given by the Kemeny Rule. There are many such
examples. Consider the following setup with 3 voters on alternatives {A,B,C,D}.
Consider the following preference profile:

2 voters 1 voter
B A
A C
C D
D B

Calculating Borda scores for each alternative, we get that A gets 7 points, B gets
6 points, and C gets 4 points, and D gets 1 point. Thus, the Borda score returns
a ranking A ≻ B ≻ C ≻ D. Now, note that since the majority of the voters in
this scenario have the ranking B ≻ A ≻ C ≻ D, this is actually the output of the
Kemeny rule. This is because the majority of the voters agree with each of the head-
to-head comparisons made in this ranking, and so any ranking that disagrees with this
ranking on a head-to-head comparison will disagree with the majority, thus increasing
that ranking’s total KT distance with the preference profile. Thus B ≻ A ≻ C ≻ D
minimizes the KT distance with the preference profile and is therefore the MLE for the
ground-truth ranking under the Mallows model, but the Borda count gives a different
ranking!
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