CS 1360 Spring 2025 Midterm Exam (Practice)

Problem 1: Game Theory

1. [10 pts] Provide a definition (using mathematical notation) of best response in a normal-form game.

Solution: x_i is a best response to \mathbf{x}_{-i} if for all $x_i' \in \Delta(S)$, $u_i(x_i, \mathbf{x}_{-i}) \geq u_i(x_i', \mathbf{x}_{-i})$.

2. [15 pts] Consider a 2-player game in normal form, and denote the strategy set of each player by S. Let $B_1(x_2)$ denote the set of (possibly mixed) best response strategies of player 1 to the (possibly mixed) strategy x_2 of player 2. For convenience, let us fix some mixed strategy x_2^* for player 2, and denote $\alpha = u_1(x_1, x_2^*)$ for all $x_1 \in B_1(x_2^*)$, that is, α is the maximum utility player 1 can achieve against x_2^* .

Show that $x_1 \in B_1(x_2^*)$ if and only if every pure strategy $s \in S$ in the support of x_1 (i.e., every pure strategy s such that $x_1(s) > 0$) is itself in $B_1(x_2^*)$ (i.e., $u_1(s, x_2^*) = \alpha$).

Note: Do not forget to show both directions.

Solution: (\Longrightarrow) Assume that $x_1 \in B_1(x_2^*)$. Then, let $s \in S$ be any strategy such that $s \notin B_1(x_2^*)$. Assume for the sake of contradiction that $x_1(s) > 0$. Then, since α is the maximum utility player 1 can achieve against x_2^* , it must be true that $u_1(s, x_2^*) < \alpha$ and also that

$$u_1(x_1, x_2^*) = \sum_{s \in S : x_1(s) > 0} x_1(s)u_1(s, x_2^*) < \sum_{s \in S : x_1(s) > 0} x_1(s)\alpha = \alpha$$

and so $x_1 \notin B_1(x_2^*)$. However, this is a contradiction, and so it must be true that $x_1(s) = 0$. Therefore, every pure strategy that is in the support of x_1 must itself be in $B_1(x_2^*)$.

(\iff) Assume that x_1 is a possible mixed strategy such that every pure strategy that is in the support of x_1 is in $B_1(x_2^*)$. Then, for every $s \in S$ such that $x_1(s) > 0$, we know that $u_1(s, x_2^*) = \alpha$ and so

$$u_1(x_1, x_2^{\star}) = \sum_{s \in S : x_1(s) > 0} x_1(s)u_1(s, x_2^{\star}) = \sum_{s \in S : x_1(s) > 0} x_1(s)\alpha = \alpha$$

and so $x_1 \in B_1(x_2^*)$ by definition.

Problem 2: Equilibrium Computation

1. [10 pts] Define (using mathematical notation) the notion of strong Stackelberg equilibrium (SSE).

Solution: In a strong Stackelberg equilibrium (SSE) the leader plays a mixed strategy in

$$\operatorname{argmax}_{x_1 \in \Delta(S)} \operatorname{max}_{s_2 \in B_2(x_1)} u_1(x_1, s_2)$$

where $\Delta(S)$ is the set of all mixed strategies. The follower plays the corresponding strategy s_2 in the best response set (breaking ties in favor of the leader).

2. [15 pts] Describe a polynomial-time algorithm that computes an SSE in a given Stackelberg game.

Note: This was done in class.

Solution: The leader's mixed strategy is defined by variables $x(s_1)$, which give the probability of playing each strategy $s_1 \in S$. For each follower strategy s_2^* , we compute a strategy x for the leader such that playing s_2^* is a best response for the follower, and under this constraint, x is optimal. This computation is done via the following LP:

$$\max \sum_{s_1 \in S} x(s_1)u_1(s_1, s_2^*)$$
s.t.
$$\forall s_2 \in S, \sum_{s_1 \in S} x(s_1)u_2(s_1, s_2^*) \ge \sum_{s_1 \in S} x(s_1)u_2(s_1, s_2)$$

$$\sum_{s_1 \in S} x(s_1) = 1$$

Finally, we take the x resulting from the "best" s_2^* .

Problem 3: The Price of Anarchy

1. [10 pts] Describe in words the concept of price of anarchy of a class of games.

Solution: Fixing an objective function and an equilibrium concept for the class of games, the price of anarchy is the worst-case ratio between the worst objective function value of an equilibrium of the game, and that of the optimal solution.

2. [15 pts] Assignment 2 introduced scheduling games on related machines. Here we are interested in scheduling games on unrelated machines. The players $N = \{1, \ldots, n\}$ are associated with tasks and there is a set M of m machines. Each player chooses a machine to place their task on, that is, the strategy space of each player is M. The weights of players (or tasks) are now machine-dependent: player i has weight $w_{i\mu}$ on machine μ . A strategy profile induces an assignment $A: N \to M$ of players (or tasks) to machines. The total load on machine μ is $\ell_{\mu} = \sum_{i \in N: A(i) = \mu} w_{i\mu}$. The cost of player i is $\ell_{A(i)}$. Our objective function is the makespan, which is the maximum load on any machine: $\cot(A) = \max_{\mu \in M} \ell_{\mu}$.

Show that for any number of players $n \geq 2$, scheduling games on unrelated machines have an unbounded (i.e., arbitrarily high) price of anarchy.

Solution: Note that there are many correct solutions to this problem. Consider a case where m = n and

$$w_{i\mu} = \begin{cases} 1 & \text{if } i = \mu \\ x & \text{if } i \neq \mu \end{cases}$$

for some $x \geq 2$. Then, it is clear that the strategy profile A(i) = i for all i = 1, ..., n results in the optimal (lowest) cost as cost(A) = 1 since $\ell_{\mu} = 1$ for all $\mu = 1, ..., m$. However, consider the strategy profile B where

$$B(i) = \begin{cases} i+1 & \text{if } i \le n-1\\ 1 & \text{if } i=n \end{cases}$$

Here, we have that cost(B) = x because $\ell_{\mu} = x$ for all $\mu = 1, ..., m$. Further, note that B is a Nash equilibrium, because if any player unilaterally deviates to a different machine, their cost will increase from x to x + 1 (if they deviate to machine i) or 2x (if they deviate to machine $j \neq i$). Thus, based on this example of an equilibrium for this game

$$PoA \ge \frac{x}{1} = x$$

and since we can set x to be arbitrarily large, it follows that the price of anarchy for these scheduling games on unrelated machines is unbounded.

Problem 4: The Epistemic Approach to Voting

1. [10 pts] Define (using mathematical notation) the Mallows noise model.

Solution: The Mallows model is parameterized by $\phi \in (0,1]$. The probability of a voter having a ranking σ given the true ranking π is:

$$\Pr[\sigma \mid \pi] = \frac{\phi^{d_{KT}(\sigma,\pi)}}{\sum_{\tau} \phi^{d_{KT}(\tau,\pi)}}.$$

Here, d_{KT} is the Kendall tau distance, and this is defined as:

$$d_{KT}(\sigma, \sigma') = |\{(a, b) : a \succ_{\sigma} b \text{ and } b \succ_{\sigma'} a\}|$$

i.e., the number of pairwise disagreements between the two rankings.

2. [15 pts] Construct a preference profile such that, under the Mallows model with any value of the parameter $\phi \in (0, 1)$, the ranking given by Borda count (i.e., ranking the

alternatives by Borda score, breaking ties as you wish) is *not* a maximum likelihood estimator for the ground-truth ranking.

Hint: What would Kemeny do?

Solution: First, note that under the Mallows model, we have shown in class that the MLE of the ground-truth ranking is the ranking given by the Kemeny Rule, i.e. the ranking π that minimizes the sum of the KT distances with the preference profile:

$$\operatorname{argmin}_{\pi} \sum_{i \in N} d_{KT}(\sigma_i, \pi).$$

Thus, we must come up with a strategy profile such that the ranking given by Borda count disagrees with the ranking given by the Kemeny Rule. There are many such examples. Consider the following setup with 3 voters on alternatives $\{A, B, C, D\}$. Consider the following preference profile:

2 voters	1 voter
В	A
A	\mathbf{C}
\mathbf{C}	D
D	В

Calculating Borda scores for each alternative, we get that A gets 7 points, B gets 6 points, and C gets 4 points, and D gets 1 point. Thus, the Borda score returns a ranking $A \succ B \succ C \succ D$. Now, note that since the majority of the voters in this scenario have the ranking $B \succ A \succ C \succ D$, this is actually the output of the Kemeny rule. This is because the majority of the voters agree with each of the head-to-head comparisons made in this ranking, and so any ranking that disagrees with this ranking on a head-to-head comparison will disagree with the majority, thus increasing that ranking's total KT distance with the preference profile. Thus $B \succ A \succ C \succ D$ minimizes the KT distance with the preference profile and is therefore the MLE for the ground-truth ranking under the Mallows model, but the Borda count gives a different ranking!