CS 1360 Spring 2025 Midterm Exam (Practice)

Problem 1: Game Theory

- 1. [10 pts] Provide a definition (using mathematical notation) of best response in a normal-form game.
- 2. [15 pts] Consider a 2-player game in normal form, and denote the strategy set of each player by S. Let $B_1(x_2)$ denote the set of (possibly mixed) best response strategies of player 1 to the (possibly mixed) strategy x_2 of player 2. For convenience, let us fix some mixed strategy x_2^* for player 2, and denote $\alpha = u_1(x_1, x_2^*)$ for all $x_1 \in B_1(x_2^*)$, that is, α is the maximum utility player 1 can achieve against x_2^* .

Show that $x_1 \in B_1(x_2^*)$ if and only if every pure strategy $s \in S$ in the support of x_1 (i.e., every pure strategy s such that $x_1(s) > 0$) is itself in $B_1(x_2^*)$ (i.e., $u_1(s, x_2^*) = \alpha$).

Note: Do not forget to show both directions.

Problem 2: Equilibrium Computation

- 1. [10 pts] Define (using mathematical notation) the notion of strong Stackelberg equilibrium (SSE).
- 2. [15 pts] Describe a polynomial-time algorithm that computes an SSE in a given Stackelberg game.

Note: This was done in class.

Problem 3: The Price of Anarchy

- 1. [10 pts] Describe in words the concept of price of anarchy of a class of games.
- 2. [15 pts] Assignment 2 introduced scheduling games on related machines. Here we are interested in scheduling games on unrelated machines. The players $N = \{1, ..., n\}$ are associated with tasks and there is a set M of m machines. Each player chooses a machine to place their task on, that is, the strategy space of each player is M. The weights of players (or tasks) are now machine-dependent: player i has weight w_{iu} on

machine μ . A strategy profile induces an assignment $A: N \to M$ of players (or tasks) to machines. The total load on machine μ is $\ell_{\mu} = \sum_{i \in N: A(i) = \mu} w_{i\mu}$. The cost of player i is $\ell_{A(i)}$. Our objective function is the makespan, which is the maximum load on any machine: $\cot(A) = \max_{\mu \in M} \ell_{\mu}$.

Show that for any number of players $n \geq 2$, scheduling games on unrelated machines have an unbounded (i.e., arbitrarily high) price of anarchy.

Problem 4: The Epistemic Approach to Voting

- 1. [10 pts] Define (using mathematical notation) the Mallows noise model.
- 2. [15 pts] Construct a preference profile such that, under the Mallows model with any value of the parameter $\phi \in (0,1)$, the ranking given by Borda count (i.e., ranking the alternatives by Borda score, breaking ties as you wish) is *not* a maximum likelihood estimator for the ground-truth ranking.

Hint: What would Kemeny do?