
CS 1360 Spring 2025
Midterm Exam

Name:

Harvard ID:

1



Name:

Problem 1: Equilibrium Computation

1. [10 pts] Define (using mathematical notation) the notion of maximin strategy (of
player 1) in a two-player zero-sum game.

Solution: The Maximin (randomized) strategy of player 1 is

x⋆
1 ∈ arg max

x1∈∆(S1)
min
s2∈S2

u1(x1, s2)

The Minimax (randomized) strategy of player 2 is

x⋆
2 ∈ arg min

x2∈∆(S2)
max
s1∈S1

u1(s1, x2)

2. [15 pts] Write down a linear program that computes a maximin strategy in a two-
player zero-sum game.

Note: This was done in class.

Solution: The Maximin strategy is computed via LP (and the minimax strategy is
computed analogously):

max w

s.t. ∀s2 ∈ S,
∑
s1∈S

p(s1)u1(s1, s2) ≥ w,∑
s1∈S

p(s1) = 1,

∀s1 ∈ S, p(s1) ≥ 0.

Here, w is the maximum utility player 1 can achieve when player 2 minimizes player
1’s utility. The first set of constraints says that every strategy player 2 plays must
result in a utility for player 1 of at least w. The second and third constraints are just
trivial constraints on the probabilities in player 1’s mixed strategy.

2



Name:

Problem 2: The Price of Anarchy

1. [10 pts] Describe in words how to establish an upper bound and a lower bound on
the price of anarchy of a given class of games. As in class, the solution concept is pure
Nash equilibrium and the objective function is social cost (sum of costs).

Solution: To derive an upper bound of x, we need to show that for every game in the
class and every equilibrium of the game, the ratio between the cost of the equilibrium
and the optimal cost is at most x.

The derive a lower bound of x, we need to give an example of a game in the class and
an equilibrium of the game such that the ratio between the cost of the equilibrium and
the optimal cost is at least x.

2. [15 pts] Consider the class of all 2-player normal-form games with costs that are
integers in {1, 2, . . . , k}, that is, for every (pure) strategy profile (s1, s2), the cost of
player i is ci(s1, s2) ∈ {1, 2, . . . , k}. Once again, the solution concept is pure Nash
equilibrium and the objective function is social cost. Show that the price of anarchy
is exactly k.

Hint: Establish an upper bound (immediate) and a lower bound (a 2×2 game suffices).

Solution:

Upper bound: the worst-case Nash equilibrium has a social cost of 2k (both players
incur a cost of k). The optimal social cost is 2, if both players incur a cost of 1. Hence
our upper bound is 2k

2
= k, i.e. PoA ≤ k.

Lower bound: to show that this bound is tight, we construct a specific game where the
PoA reaches k. Consider the following 2× 2 game:

A1 A2

A1 (k, k) (2, k)
A2 (k, 2) (1, 1)

The NE are (A1, A1), (A2, A2). The former has a social cost of 2k and the latter a
social cost of 2. Hence our lower bound is 2k/2 = k, i.e. PoA ≥ k.

3



Name:

Problem 3: Voting Rules

1. [10 pts] Describe in words the concepts Condorcet winner and Condorcet consistency.

Solution: ACondorcet winner is an alternative that defeats every other alternative
in a head-to-head comparison.

A rule is Condorcet consistent if it always selects a Condorcet winner whenever it
is presented with a profile that contains one.

2. [15 pts] In a given preference profile, we say that alternative x is a majority winner
if a majority of voters (more than n/2) rank x first. We say that a voting rule (social
choice function) is majority consistent if the rule selects the majority winner whenever
it is given a preference profile in which such an alternative exists.

Prove or disprove the following statements:

• Any Condorcet consistent voting rule is majority consistent.

• Any majority consistent voting rule is Condorcet consistent.

Solution:

Any Condorcet consistent voting rule is majority consistent. True. Suppose
an alternative x is a majority winner, where a majority of voters rank x first. Then,
for a majority of voter’s preference voters, x will defeat all other alternatives in a head
to head comparison. By definition, x is also a Condorcet winner. This means that any
majority winner is also a Condorcet winner, so any Condorcet consistent voting rule
is majority consistent.

Any majority consistent voting rule is Condorcet consistent. False. Proof by
counterexample: consider the plurality rule. It is majority consistent, since plurality
only considers each voter’s top choice. When a majority of voters rank an alternative x
first, x wins. However, plurality is not Condorcet consistent. Consider plurality among

4



the following ranking preference profile:

1 2 3 4 5
a a b c d
b b c b b
c c d d c
d d a a a

Here b is the Condorcet winner, but plurality selects a.

5



Name:

Problem 4: Strategic Manipulation in Elections

1. [10 pts] Define the f -Manipulation problem for a voting rule f .

Solution: The f −MANIPULATION problem is defined as follows: Given votes
of non-manipulators and a preferred alternative p, can a manipulator cast a vote that
makes p uniquely win under f?

2. [15 pts] Let us define another computational problem, the f -Shmanipulation prob-
lem. In this problem, we are given a voter i ∈ N and a complete preference profile σ,
and we are asked whether there is a ranking σ′

i such that f(σ′
i,σ−i) ≻σi

f(σ).

Show that if the voting rule f is such that there is a polynomial-time algorithm for
f -Manipulation, then there is a polynomial-time algorithm for f -Shmanipulation.

Solution: We can construct f -Shmanipulation as a reduction to f -Manipulation
with a polynomial number of oracle calls.

Let us say that we have a set of m total alternatives. Then, for each alternative ai
from i = 0 to m such that ai ≻ f(σ), we can define the f -Manipulation as follows:

• The votes of the non-manipulators are σ−i.

• The preferred alternative is ai

• The voting rule is f .

When we run the polynomial-time algorithm for f -Manipulation, it will determine
whether there is a vote that σ′

i can cast such that ai = f(σ′
i,σ−i). If we find a ai where

this can occur, then we have found a solution to the f -Shmanipulation and can stop
the algorithm. If we do not find a ai where this can occur, then there is no possible
ranking.

Let us say that the runtime of f -Manipulation is O(np). The runtime of our overall
algorithm in the worst-case is m∗O(np), which is also in polynomial time. Thus, if the
voting rule f is such that there is a polynomial-time algorithm for f -Manipulation,
then there is a polynomial-time algorithm for f -Shmanipulation.

6



Name:

Additional Space / Scratch Paper

7



Name:

Additional Space / Scratch Paper

8


