CS 1360 Spring 2025
Final Exam (Practice)
— Solutions —

Problem 1: Social Choice

1. [5 pts] Define (using mathematical notation) the concept of a neutral social choice
function.

Solution: Let A be a finite set of alternatives, N = {1,...,n} the set of voters, and
L(A) the set of all strict orders on A. A social choice function is f : L(A)N — A. Tt
is neutral if for every bijection m : A — A and every profile o € L(A)Y, f(ﬂ(a')) =

7(f(0)), where w(o) = (7(01),...,m(0n)).

2. [15 pts] A social choice function f is anonymous if for any permutation 7 : N — N
and any preference profile o, f(01,02,...,0,) = f(0r1),Or@2):-- -+ 0rn)). Informally,
changing the order (or “names”) of voters does not change the outcome. Prove that, for
the case of two voters and two alternatives, no social choice function is both anonymous
and neutral.

Solution: Let A = {a,b} and N = {1,2}. Assume for contradiction that f is
anonymous and neutral. Consider the profile

o = (01,00) with oy1:a>0b,09:b> a.

Assume without loss of generality that f(o) = a. Now let 7 : N — N be the trans-
position swapping voters 1 and 2, and let 7 : A — A be the transposition swapping
alternatives a and b. Note that applying either 7 or 7 to o leads to the same profile o”.
By anonymity, f(o’) = f(7(o)) = a. But by neutrality, f(o’) = f(n(o)) = 7(a) = 0.
This is a contradiction since a # b.

Problem 2: Indivisible Goods

1. [5 pts] Define (using mathematical notation) the notion of envy freeness up to one
good (EF1).

Solution: We say the allocation A is EF1 if
Vi,j € N, 3g€ A; suchthat Vi(4;) > V;(4;\ {g}).
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2. [15 pts| Let there be two players with additive, strictly positive valuations over a
set of goods. Consider the following algorithm: player 1 divides the goods into two
bundles X; and X5 in a way that maximizes min{V;(X1), V1(X3)} (intuitively, player 1
divides the goods as evenly as possible according to their own valuation). Then, player
2 chooses their favorite bundle, and player 1 receives the remaining bundle. Prove that
this algorithm produces an EF1 allocation.

Solution: Let the resulting allocation be (A1, Ay) where Ay = Xy, A1 = X3 4.

(i) No envy by player 2: By choice, Va(Ay) = Vo(Xy) > Va(X3-) = Va(Ay), so player
2 envies player 1 by at most zero goods (hence EF1 holds trivially for i = 2).

(i1) EF1 for player 1: Since player 1 chose (X, X3) to maximize min{V;(X), V1(X2)},
it follows that
Vi(X)) ~ K(X)| < maxVa{o)), )

because otherwise moving the single most-valuable good from the richer bundle to the
poorer would increase the minimum. In particular, if Ay = X} is the bundle player 2
picks, then

Vildn) = Vi(Xs ) 2 Vi(Xa) — maxVa({g}) = Vi(4s) — maxVi({g}).

Hence there exists some good g € Ay (namely the one of maximum V;-value) such that

Vi(A) > Vi(A2\{g}),

which is precisely EF1 for ¢ = 1.
Combining (i) and (ii) shows the allocation is EF1.

Note: The same argument actually shows the stronger property of EFX, since Equa-
tion (1) holds even with min instead of max.

Problem 3: Online Matching Algorithms

1. [5 pts] Define (using mathematical notation) the competitive ratio of an online (bi-
partite) matching algorithm.

Solution: ALG has competitive ration a < 1 if for every graph G = (U, V, F) and
every input order 7 of V, ALG(G,n)/OPT(G) > «.

2. [15 pts] Consider the following online matching algorithm. When an online vertex
v € V arrives, if it has an offline neighbor u that has already been matched (that is,
there is u € U such that (u,v) € E and u has been matched with v € V' that arrived
before v), don’t match v. Otherwise, match v with an arbitrary unmatched neighbor.



What is the competitive ratio of this algorithm, as a function of n (the number of
vertices on each side)?

Note: Establish an upper bound and a lower bound. The two bounds should ideally
be equal.

Solution: We claim the competitive ratio is exactly 1/n.

Upper bound. Take the complete bipartite graph K, , with any arrival order. On the
very first arrival vy, no offline vertex is yet matched, so A matches it to some wu;.
But every subsequent v; sees that wu; is already matched, so A leaves all vy, ..., v,
unmatched. Hence

ALG(o) 1

ALG(0) =1,0PT(0) =n = OPT(o) =

Lower bound. On any input o with OPT (o) = k > 1, there is at least one edge
(u,v) € E. Let v* be the first arriving vertex that has at least one neighbor in U.
Since no offline vertex was matched before v* (all earlier arrivals had no neighbors),
the algorithm will match v* to some free neighbor. Thus ALG(0) > 1, and

ALG(0o) - 1 - 1
OPT(o0) — k —n

Problem 4: Cascade Models

1. [5 pts] Define the contagion threshold of an infinite graph (with bounded degrees).
Solution: Given a finite seed set S C V, set

Ay=5, A=A U{v¢ A INw)NA| > g [N},

and write A, = J,5o Ai. We say S is contagious if A,, = V. The contagion threshold
of G is -

q.(G) = max{ g € [0,1] : there exists a finite contagious seed S} .

2. [15 pts] Consider a graph G which is composed of an infinite sequence of triangles,
where adjacent triangles are connected by a single edge, as shown below:




What is the contagion threshold of G?7

Note: Establish an upper bound and a lower bound. The two bounds should ideally
be equal.

Solution: We show ¢.(G) = 3.

Lower bound (q. > 5): If ¢ < %, then for every vertex of degree d € {2,3}, [¢d] < 1.
Hence the activation rule reduces to “at least one active neighbor,” and a single-vertex
seed S = {v} will eventually flood the entire infinite path of triangles.

Upper bound (q. < % ): Suppose by way of contradiction that ¢ > % and yet there
is some finite seed set S whose activation eventually reaches every vertex. Observe
that in our “chain of triangles” each bridge vertex (the one connecting two consecutive
triangles) has degree 3 (two neighbors within its own triangle, plus one neighbor across
the bridge). Since g > %, we have [q - 3] = 2, so each bridge vertex requires at least
two active neighbors before it can become active itself.

Now any finite seed S can only occupy finitely many triangles. Let T,,.x be the right-
most triangle that ever contains an active vertex. By definition of T}, all vertices
in the next triangle to the right are initially inactive, and they remain so until the
bridge vertex between T,,.x and that next triangle activates. But at the moment we
attempt to activate this bridge vertex, its only active neighbor is the single bridge-edge
endpoint in T},,c—the other two neighbors (its two partners inside the next triangle)
are still inactive. Hence it has only one active neighbor, which is strictly less than the

required two, and so it cannot become active.

Therefore the cascade cannot cross from Tj,., into the next triangle, contradicting the
assumption that S was contagious. We conclude that no finite seed can ever activate
the entire graph when ¢ > %, and thus ¢.(G) < %

Problem 5: Feature Attribution

1. [5 pts] Define (using mathematical notation) the Shapley value o;(N,v) of playeri € N
in a cooperative game (N, v).

Solution: Let (IV,v) be a cooperative game with |[N| = n and v(0)) = 0. For each
permutation 7 of N, write S, (i) = {j € N : 7 places j before z} for the set of players
preceding ¢ in 7. Then the Shapley value of player i is

oi(N,v) = % S [o(5+0) U £i3) — w(S(0) .

2. [15 pts] Prove that ).y 0;(N,v) = v(N).

Note: This was done in class.



Solution: We must show ),y 0;(INV,v) = v(N). By the permutation definition,
S o) = X 5 500 )~ (5.0
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Interchange the sums over ¢« and over permutations 7:

> oi(N,v) == Z > [w(Sx(i) U {i}) — v(Sx(0))].
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Now, for each fixed permutation 7 = (7(1),...,7(n)), the inner sum >,y [v(Sx(i) U
{i}) — v(Sx(7))] is exactly the telescoping sum of marginal contributions as players
enter in the order 7:

[({m(W)}) —v@)] + [v({x(1),7(2)}) —v{7OH] + - + [v(N) = (N \ {7 (n)})].
All intermediate terms cancel, leaving
Z [v(Sx (1) U {i}) — v(Sx(0))] = v(N) —v(@) = v(N).

Since this holds for every m, we get Y,.y 0i(N,v) = 5> s v(N) = v(N). Thus
the Shapley value vector distributes the entire worth v(/N) among the players, proving
efficiency.



