CMU 15-896

 FAIR DIVISION 3: RENT DIVISIONTEACHER:
ARIEL PROCACCIA

A true story

- In 2001 I moved into an apartment in Jerusalem with Naomi and Nir
- One larger bedroom, two smaller bedrooms
- Naomi and I searched for the apartment, Nir was having fun in South America
- Nir's argument: I should have the large room because I had no say in choosing apartment - Made sense at the time!
- How to fairly divide the rent?

SPERNER'S LEMMA

- Triangle T partitioned into elementary triangles
- Label vertices by $\{1,2,3\}$ using Sperner labeling:
- Main vertices are different
- Label of vertex on an edge (i, j) of T is i or j
- Lemma: Any Sperner
 labeling contains at least one fully labeled elementary triangle

PROOF OF LEMMA

- Doors are 12 edges
- Rooms are elementary triangles
- \#doors on the boundary of T is odd
- Every room has ≤ 2 doors; one door iff the room is 123

PROOF OF LEMMA

- Start at door on boundary and walk through it
- Room is fully labeled or it has another door...
- No room visited twice
- Eventually walk into fully labeled room or back to boundary

- But \#doors on boundary is odd ■

FAIR RENT DIVISION

- Assume there are three housemates A, B, C
- Goal is to divide rent so that each person wants different room
- Sum of prices for three rooms is 1
- Can represent possible partitions as triangle

FAIR RENT DIVISION

- "Triangulate" and assign "ownership" of each vertex to each of A, B, and $\mathrm{C} \ldots$
- ... in a way that each elementary triangle is an ABC triangle

15896 Spring 2016: Lecture 8
Carnegie Mellon University

FAIR RENT DIVISION

- Ask the owner of each vertex to tell us which room he prefers
- This gives a new labeling by $1,2,3$
- Assume that a person wants a free room if one is offered to him
- Choice of rooms on edges is constrained by the free room assumption

15896 Spring 2016: Lecture 8
Carnegie Mellon University 11

- Sperner's lemma (variant): such a labeling must have a 123 triangle

15896 Spring 2016: Lecture 8
Carnegie Mellon University 12

FAIR RENT DIVISION

- Such a triangle is nothing but an approximately envy free allocation!
- By making the triangulation finer, we can increase accuracy
- In the limit we obtain a completely envy free allocation
- Same techniques generalize to more housemates [Su 1999]

QUASI-LINEAR UTILITIES

- Suppose each player $i \in N$ has value $v_{i r}$ for room r
- The utility of player i for getting room r at price p_{r} is $v_{i r}-p_{r}$
- (π, \boldsymbol{p}) is envy free if

$$
\forall i, j \in N, v_{i \pi(i)}-p_{\pi(i)} \geq v_{i \pi(j)}-p_{\pi(j)}
$$

- Theorem: An envy-free solution always exists under quasi-linear utilities

QUASI-LINEAR UTILITIES

Poll 1: Suppose (π, \boldsymbol{p}) is an EF allocation. Then:

1. $\quad \sum_{i} v_{i \pi(i)}$ is maximized
2. There is no $\left(\pi^{\prime}, \boldsymbol{p}^{\prime}\right)$ that Pareto-dominates (π, \boldsymbol{p})

3. Both
4. Neither

WHICH MODEL IS BETTER?

- Advantage of quasi-linear utilities: preference elicitation is easy
- Each player reports a single number in one shot
- Disadvantage of quasi-linear utilities: does not correctly model real-world situations
- I want the room but I really can't spend more than $\$ 500$ on rent

spliddít

Share Rent

Divide Goods

Split Fare

Distribute Tasks

Assign Credit

Suggest an App

15896 Spring 2016: Lecture 8

COMPUTATIONAL RESOURCES

- Setting: allocating multiple homogeneous resources to agents with different requirements
- Running example: shared cluster
- Assumption: agents have proportional demands for their resources (Leontief preferences)
- Example:
- Agent has requirement (2 CPU,1 RAM) for each copy of task
- Indifferent between allocations $(4,2)$ and $(5,2)$

Model

- Set of players $N=\{1, \ldots, n\}$ and set of resources $R,|R|=m$
- Demand of player i is $\boldsymbol{d}_{i}=\left(d_{i 1}, \ldots, d_{i m}\right)$, $0<d_{i r} \leq 1 ; \exists r$ s.t. $d_{i r}=1$
- Allocation $\boldsymbol{A}_{i}=\left(A_{i 1}, \ldots, A_{i m}\right)$ where $A_{i r}$ is the fraction of r allocated to i
- Preferences induced by the utility function

$$
u_{i}\left(\boldsymbol{A}_{i}\right)=\min _{r \in R} A_{i r} / d_{i r}
$$

DOMINANT RESOURCE FAIRNESS

- Dominant resource of $i=r$ s.t. $d_{i r}=1$
- Dominant share of $i=A_{i r}$ for dominant r
- Mechanism: allocate proportionally to demands and equalize dominant shares

Agent 1 alloc.

Agent 2 alloc.

FORMALLY...

- DRF finds x and allocates to i an $x d_{i r}$ fraction of resource r:

$$
\max x \text { s.t. } \forall r \in R, \sum_{i \in N} x \cdot d_{i r} \leq 1
$$

- Equivalently, $x=\frac{1}{\max _{r \in R} \sum_{i \in N} d_{i r}}$
- Example: $d_{11}=\frac{1}{2} ; d_{12}=1 ; d_{21}=1 ; d_{22}=\frac{1}{6}$ then $x=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}$

AXIOMATIC PROPERTIES

- Pareto optimality (PO)
- Envy-freeness (EF)
- Proportionality (a.k.a. sharing incentives, individual rationality):

$$
\forall i \in N, u_{i}\left(\boldsymbol{A}_{i}\right) \geq u_{i}\left(\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\right)
$$

- Strategyproofness (SP)

PROPERTIES OF DRF

- An allocation \boldsymbol{A}_{i} is non-wasteful if $\exists x$ s.t. $A_{i r}=x d_{i r}$ for all r
- If \boldsymbol{A}_{i} is non-wasteful and $u_{i}\left(\boldsymbol{A}_{i}\right)<u_{i}\left(\boldsymbol{A}_{i}^{\prime}\right)$ then $A_{\text {ir }}<A_{i r}^{\prime}$ for all r
- Theorem [Ghodsi et al. 2011]: DRF is PO, EF, proportional, and SP

PROOF OF THEOREM

- PO: obvious
- EF:
- Let r be the dominant resource of i
- $A_{i r}=x \cdot d_{i r}=x \geq x \cdot d_{j r}=A_{j r}$
- Proportionality:
- For every $r, \sum_{i \in N} d_{i r} \leq n$
- Therefore, $x=\frac{1}{\max _{r} \sum_{i \in N} d_{i r}} \geq \frac{1}{n}$

PROOF OF THEOREM

- Strategyproofness:
- $d_{j r}^{\prime}$ are the manipulated demands; $d_{j r}^{\prime}=d_{j r}$ for all $j \neq i$
- Allocation is $A_{j r}^{\prime}=x^{\prime} d_{j r}^{\prime}$
- If $x^{\prime} \leq x, r$ is the dominant resource of i, then $A_{i r}^{\prime}=x^{\prime} d_{i r}^{\prime} \leq x d_{i r}^{\prime} \leq x d_{i r}=A_{i r}$
- If $x^{\prime}>x$, let r be the resource saturated by $\boldsymbol{A}\left(\sum_{j \in N} x d_{j r}=1\right)$, then
$A_{i r}=1-\sum_{j \neq i} A_{j r}=1-\sum_{j \neq i} x d_{j r}>1-\sum_{j \neq i} x^{\prime} d_{j r}=1-\sum_{j \neq i} A_{j r}^{\prime} \geq A_{i r}^{\prime}$
15896 Spring 2016: Lecture 8
Carnegie Mellon University 25

