FAIR DIVISION 1:
CAKE CUTTING

TEACHER:
ARIEL PROCACCIA



e Single heterogeneous
cood, represented as

[0,1.
e Set of players N
={1,..,n}
e Piece of cake '_
X < [0,1]: finite union &
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Each player i has a valuation V;
that is:

Additive Normalized Divisible
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FAIRNESS, FORMALIZED

 Our goal is to find an allocation
Aq, ..., A,

e Proportionality:

1
Vi€ N, Vi(4) 2~

* Envy-Freeness (EF):
Vi,j € N,V;(4;) = Vi(4;)
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FAIRNESS, FORMALIZED

____________________________________________________________________________________________________________________________

Poll 1: What is the relation between
éproportionality and EF?

1. Proportionality = EF
2. EF = proportionality
3.  Equivalent

4. Incomparable

____________________________________________________________________________________________________________________________
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CUT-AND-CHOOSE

* Algorithm for n = 2 |Procaccia ml
12/3 Q

and Procaccia, circa 1985]

e Player 1 divides into two pieces

X,Y s.t. 1/
ViX)=1/2,V,(Y)=1/2 1/3 B

 Player 2 chooses preferred piece

 This is EF and proportional
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THE ROBERTSON-WEBB MODEL

* What is the time complexity of C&C?
e Input size is n

« Two types of queries
o Eval;(x,y) returns V;(|x, y])
o Cut;(x,a) returns y such that V;(|x,y]) = «a

eval output — “

. X y cut output
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THE ROBERTSON-WEBB MODEL

 Two types of queries

o Eval;(x,y) = Vi(Ix, y])
o Cut;(x,a) =yst.V:([x,y]) =«

é#queries needed to find an
EF allocation when n = 27
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DUBINS-SPANIER

e Referee continuously moves knife

 Repeat: when piece left of knife is worth
1/n to player, player shouts “stop” and
gets plece

e That player is removed

e Last player gets remaining piece
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DUBINS-SPANIER

____________________________________________________________________________________________________________________________

Poll 2: What is the complexity of DS in the
RW model?

1. 0(n)
2. O(nlogn)
3. 0(n?)

+. O(n?logn)

____________________________________________________________________________________________________________________________
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DUBINS-SPANIER

$y & I
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DUBINS-SPANIER
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DUBINS-SPANIER

15896 Spring 2016: Lecture 6 Carnegie Mellon University 13




DUBINS-SPANIER
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EVEN-PAZ

e Given [x,y], assume n = 2¥

e It n =1, give |x,y] to the single player

 Otherwise, each player i makes a mark z
S.t.

1
Vi([x, z]) = EVi([x: y])
e Let z* be the n/2 mark from the left

* Recurse on [x,z*] with the left n/2 players,
and on [z*,y] with the right n/2 players
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EVEN-PAZ

| IR ¥
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EVEN-PAZ: PROPOTIONALITY

e Claim: The Even-Paz protocol produces a
proportional allocation

e Proof:

o At stage 0, each of the n players values the
whole cake at 1

o At each stage the players who share a piece of
cake value it at least at V;(|x,y])/2

 Hence, if at stage k each player has value at

least 1/2% for the piece he’s sharing, then at
1

2k+1

stage k + 1 each player has value at least

e The number of stages is logn m
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T(1) = 0,T(n) = 2n + 2T (g)

logn

PR 272 pairs PR

A g |

Overall: 2nlogn
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COMPLEXITY OF PROPORTIONALITY

* Theorem |[Edmonds and Pruhs 2006|: Any
proportional protocol needs Q(n logn)
operations in the RW model

e We will prove the theorem on Wednesday

e The Even-Paz protocol is provably
optimal!
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WHAT ABOUT ENVY?
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SELFRIDGE-CONWAY

e Stage 0
o  Player 1 divides the cake into three equal pieces according to V,

o Player 2 trims the largest piece s.t. there is a tie between the two
largest pieces according to V,

o  Cake 1 = cake w/o trimmings, Cake 2 = trimmings
e Stage 1 (division of Cake 1)
o  Player 3 chooses one of the three pieces of Cake 1

o If player 3 did not choose the trimmed piece, player 2 is allocated the
trimmed piece

o  Otherwise, player 2 chooses one of the two remaining pieces
o Player 1 gets the remaining piece

o  Denote the pla,yer [ € {2,3} that received the trimmed piece by T, and
the other by T

» Stage 2 (division of Cake 2)

o  T'divides Cake 2 into three equal pieces according to Vi
o Players T, 1, and T’ choose the pieces of Cake 2, in that order
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THE COMPLEXITY OF EF

* Theorem |Brams and Taylor 1995|: There
is an unbounded EF cake cutting
algorithm in the RW model

e Theorem [P 2009|: Any EF algorithm
requires Q(n?) queries in the RW model

* Theorem |Kurokawa et al. 2013|: EF cake

cutting with piecewise uniform valuations
is as hard as general case
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THE COMPLEXITY OF EF
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THE COMPLEXITY OF EF

e Theorem [Kurokawa et al. 2013|:
EF cake cutting with piecewise linear
valuations is polynomial in the number
of breakpoints




A SUBTLETY

 EF protocol that uses n queries

* f = 1-1 mapping from valuation functions
to [0,1]

* The protocol asks each player cut;(0,1/2)
e Player i replies with y; = f(V;)
e The protocol computes V; = f~1(y;)

e Is this a valid EF protocol in the RW
model?
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STRATEGYPROOF CAKE CUTTING

o All the cake cutting algorithms we discussed are
not SP: agents can gain from manipulation
o Cut and choose: player 1 can manipulate

o Dubins-Spanier: shout later
o Assumption: agents report full valuations

 Deterministic EF and SP algs exist in some
special cases, but they are rather involved [Chen

et al. 2010]
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A RANDOMIZED ALGORITHM

e X, ...,X,1s a perfect partition if Vi(Xj) = 1/n for all i,j
e Algorithm
o Compute a perfect partition

o Draw a random permutation m over {1, ...,n}

o  Allocate to agent i the piece X )

e Theorem |Chen et al. 2010; Mossel and Tamuz 2010]|: the
algorithm is SP in expectation and always produces an
EF allocation

 Proof: if an agent lies the algorithm may compute a
ditferent partition but for any partition:

Z Vi(X]) == ZV(X)——

JEN JEN
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COMPUTING A PERFECT PARTITION

e Theorem [Alon, 1986|: a
pertect partition always
exists, needs
polynomially many cuts - |

e Proof is nonconstructive — |

e Can find perfect o
partitions for special
valuation functions
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