CMU 15-896

 FAIR DIVISION 1: CAKE CUTTINGTEACHER:
ARIEL PROCACCIA

- Single heterogeneous good, represented as [0,1]
- Set of players N
$=\{1, \ldots, n\}$
- Piece of cake
$X \subseteq[0,1]$: finite union of disjoint intervals

15896 Spring 2016: Lecture 6

Each player i has a valuation V_{i}

 that is:

15896 Spring 2016: Lecture 6

FAIRNESS, FORMALIZED

- Our goal is to find an allocation A_{1}, \ldots, A_{n}
- Proportionality:

$$
\forall i \in N, V_{i}\left(A_{i}\right) \geq \frac{1}{n}
$$

- Envy-Freeness (EF):

$$
\forall i, j \in N, V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)
$$

FAIRNESS, FORMALIZED

Poll 1: What is the relation between proportionality and EF?

1. Proportionality $\Rightarrow \mathrm{EF}$
2. $\mathrm{EF} \Rightarrow$ proportionality
3. Equivalent
4. Incomparable

CUT-AND-Choose

- Algorithm for $n=2$ [Procaccia and Procaccia, circa 1985]

- Player 1 divides into two pieces X, Y s.t.

$$
V_{1}(X)=1 / 2, V_{1}(Y)=1 / 2
$$

$1 / 3$

- Player 2 chooses preferred piece
- This is EF and proportional

THE ROBERTSON-WEBB MODEL

- What is the time complexity of $\mathrm{C} \& \mathrm{C}$?
- Input size is n
- Two types of queries
- $\operatorname{Eval}_{i}(x, y)$ returns $V_{i}([x, y])$
- $\operatorname{Cut}_{i}(x, \alpha)$ returns y such that $V_{i}([x, y])=\alpha$

15896 Spring 2016: Lecture 6

THE ROBERTSON-WEBB MODEL

- Two types of queries
- $\operatorname{Eval}_{i}(x, y)=V_{i}([x, y])$
- $\operatorname{Cut}_{i}(x, \alpha)=y$ s.t. $V_{i}([x, y])=\alpha$
\#queries needed to find an
EF allocation when $n=2$?

15896 Spring 2016: Lecture 6
Carnegie Mellon University 8

DUBINS-SPANIER

- Referee continuously moves knife
- Repeat: when piece left of knife is worth $1 / n$ to player, player shouts "stop" and gets piece
- That player is removed
- Last player gets remaining piece

DUBINS-SpANIER

Poll 2: What is the complexity of DS in the RW model?

1. $\Theta(n)$
2. $\Theta(n \log n)$
3. $\Theta\left(n^{2}\right)$
4. $\Theta\left(n^{2} \log n\right)$

15896 Spring 2016: Lecture 6
Carnegie Mellon University 10

DUBINS-SPANIER

DUBINS-SPANIER

DUBINS-SPANIER

DUBINS-SPANIER

EVEN-PAZ

- Given $[x, y]$, assume $n=2^{k}$
- If $n=1$, give $[x, y]$ to the single player
- Otherwise, each player i makes a mark z s.t.

$$
V_{i}([x, z])=\frac{1}{2} V_{i}([x, y])
$$

- Let z^{*} be the $n / 2$ mark from the left
- Recurse on $\left[x, z^{*}\right]$ with the left $n / 2$ players, and on $\left[z^{*}, y\right]$ with the right $n / 2$ players

Even-Paz

15896 Spring 2016: Lecture 6 Carnegie Mellon University 16

EVEN-PAZ: PROPOTIONALITY

- Claim: The Even-Paz protocol produces a proportional allocation
- Proof:
- At stage 0, each of the n players values the whole cake at 1
- At each stage the players who share a piece of cake value it at least at $V_{i}([x, y]) / 2$
- Hence, if at stage k each player has value at least $1 / 2^{k}$ for the piece he's sharing, then at stage $k+1$ each player has value at least $\frac{1}{2^{k+1}}$
- The number of stages is $\log n ■$

$$
T(1)=0, T(n)=2 n+2 T\left(\frac{n}{2}\right)
$$

Overall: $2 n \log n$

COMPLEXITY OF PROPORTIONALITY

- Theorem [Edmonds and Pruhs 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the RW model
- We will prove the theorem on Wednesday
- The Even-Paz protocol is provably optimal!

What about envy?

15896 Spring 2016: Lecture 6

Selfridge-Conway

- Stage 0
- Player 1 divides the cake into three equal pieces according to V_{1}
- Player 2 trims the largest piece s.t. there is a tie between the two largest pieces according to V_{2}
- Cake $1=$ cake w/o trimmings, Cake $2=$ trimmings
- Stage 1 (division of Cake 1)
- Player 3 chooses one of the three pieces of Cake 1
- If player 3 did not choose the trimmed piece, player 2 is allocated the trimmed piece
- Otherwise, player 2 chooses one of the two remaining pieces
- Player 1 gets the remaining piece
- Denote the player $i \in\{2,3\}$ that received the trimmed piece by T, and the other by T^{\prime}
- Stage 2 (division of Cake 2)
- $\quad T^{\prime}$ divides Cake 2 into three equal pieces according to $V_{T^{\prime}}$
- Players $T, 1$, and T^{\prime} choose the pieces of Cake 2, in that order

THE COMPLEXITY OF EF

- Theorem [Brams and Taylor 1995]: There is an unbounded EF cake cutting algorithm in the RW model
- Theorem [P 2009]: Any EF algorithm requires $\Omega\left(n^{2}\right)$ queries in the RW model
- Theorem [Kurokawa et al. 2013]: EF cake cutting with piecewise uniform valuations is as hard as general case

THE COMPLEXITY OF EF

15896 Spring 2016: Lecture 6 Carnegie Mellon University 23

THE COMPLEXITY OF EF

- Theorem [Kurokawa et al. 2013]: EF cake cutting with piecewise linear valuations is polynomial in the number of breakpoints

15896 Spring 2016: Lecture 6
Carnegie Mellon University 24

A subtlety

- EF protocol that uses n queries
- $f=1-1$ mapping from valuation functions to $[0,1]$
- The protocol asks each player $\operatorname{cut}_{i}(0,1 / 2)$
- Player i replies with $y_{i}=f\left(V_{i}\right)$
- The protocol computes $V_{i}=f^{-1}\left(y_{i}\right)$
- Is this a valid EF protocol in the RW model?

STRATEGYPROOF CAKE CUTTING

- All the cake cutting algorithms we discussed are not SP: agents can gain from manipulation
- Cut and choose: player 1 can manipulate
- Dubins-Spanier: shout later
- Assumption: agents report full valuations
- Deterministic EF and SP algs exist in some special cases, but they are rather involved [Chen et al. 2010]

A RANDOMIZED ALGORITHM

- X_{1}, \ldots, X_{n} is a perfect partition if $V_{i}\left(X_{j}\right)=1 / n$ for all i, j
- Algorithm
- Compute a perfect partition
- Draw a random permutation π over $\{1, \ldots, n\}$
- Allocate to agent i the piece $X_{\pi(i)}$
- Theorem [Chen et al. 2010; Mossel and Tamuz 2010]: the algorithm is SP in expectation and always produces an EF allocation
- Proof: if an agent lies the algorithm may compute a different partition, but for any partition:

$$
\sum_{j \in N} \frac{1}{n} V_{i}\left(X_{j}^{\prime}\right)=\frac{1}{n} \sum_{j \in N} V_{i}\left(X_{j}^{\prime}\right)=\frac{1}{n} ■
$$

COMPUTING A PERFECT PARTITION

- Theorem [Alon, 1986]: a perfect partition always exists, needs polynomially many cuts
- Proof is nonconstructive
- Can find perfect partitions for special valuation functions

