

CONDORCET STRIKES AGAIN

- For Condorcet [1785], the purpose of voting is not merely to balance subjective opinions; it is a collective quest for the truth
- Enlightened voters try to judge which alternative best serves society
- For m = 2 the majority opinion will very likely be correct
- Realistic in trials by jury or the pooling of expert opinions or in human computation!

MOTIVATION: ETERNA

- Developed at CMU (Adrien Treuille) and Stanford
- Choose 8 RNA designs to synthesize
- Some designs are truly more stable than others
- The goal of voting is to compare the alternatives by true quality

CONDORCET'S NOISE MODEL

- True ranking of the alternatives
- Voting pairwise on alternatives, each comparison is correct with prob. p > 1/2
- Results are tallied in a voting matrix

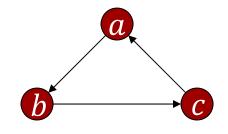
	а	b	С
а	-	8	6
b	5	-	11
С	7	2	-

What is the Borda score of alternative b?

CONDORCET'S 'SOLUTION'

- Condorcet's goal: find "the most probable" ranking
- Condorcet suggested: take the majority opinion for each comparison; if a cycle forms, "successively delete the comparisons that have the least plurality"
- In example, we delete c > a to get a > b > c

	а	b	С
а	-	8	6
b	5	-	11
С	7	2	-



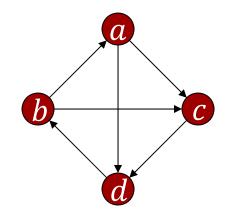
CONDORCET'S 'SOLUTION'

- With four alternatives we get ambiguities
- In example, order of strength is c > d, a > d, b > c, a > c, d > b, b > a

	,				
•	Delete	<i>b</i> >	$a \Rightarrow$	still	cycle

•	Delete d	> <i>b</i>	\Rightarrow	either	a	or	b
	could be	top-	rar	nked			

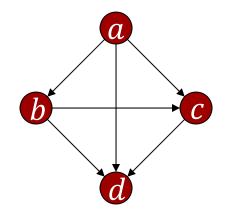
	а	b	С	d
а	-	12	15	17
b	13	-	16	11
С	10	9	ı	18
d	8	14	7	ı



CONDORCET'S 'SOLUTION'

- Did Condorcet mean we should reverse the weakest comparisons?
- Reverse b > a and $d > b \Rightarrow$ we get a > b > c > d, with 89 votes
- b > a > c > d has 90 votes (only reverse d > b)

	а	b	С	d
а	-	12	15	17
b	13	-	16	11
С	10	9	-	18
d	8	14	7	-



EXASPERATION?

- "The general rules for the case of any number of candidates as given by Condorcet are stated so briefly as to be hardly intelligible . . . and as no examples are given it is quite hopeless to find out what Condorcet meant" [Black 1958]
- "The obscurity and self-contradiction are without any parallel, so far as our experience of mathematical works extends ...

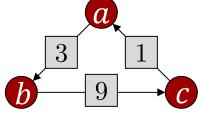
YOUNG'S SOLUTION

- M = matrix of votes
- Suppose true ranking is a > b > c; prob of observations $\Pr[M \mid >]$: $\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{11} p^{11} (1-p)^2$

•	For $a > c > b$, $Pr[M \mid >]$ is
	$\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{2} p^2 (1-p)^{11}$

	` '		` '		`
•	Coef	ficients	sare	identic	al

	а	b	С
а	-	8	6
b	5	-	11
С	7	2	_



Young's solution

Poll 1: Which ranking > maximizes Pr[M | >]?

- Delete edges in the pairwise comparison graph according to weight, until it becomes acyclic
- Reverse edges in the pairwise comparison 2. graph according to weight, until it becomes acyclic
- Find a set of edges of minimum total ••• weight in the pairwise comparison graph, such that if they are reversed the graph becomes acyclic
- Apply Borda count to M

Young's solution

- $Pr[> |M] = \frac{Pr[M|>] \cdot Pr[>]}{Pr[M]}$
- Assume uniform prior over >, $Pr[>] = \frac{1}{m!}$
- Must maximize Pr[M| >]
- The optimal rule maximizes #agreements with voters on pairs of candidates
- This rule is called the Kemeny rule

THE KEMENY RULE

- Theorem [Bartholdi, Tovey, Trick 1989]: Computing the Kemeny ranking is NPhard
- Typically formulated as an ILP: for every $(a,b) \in A^2$, $x_{(a,b)} = 1$ iff a is ranked above b, and

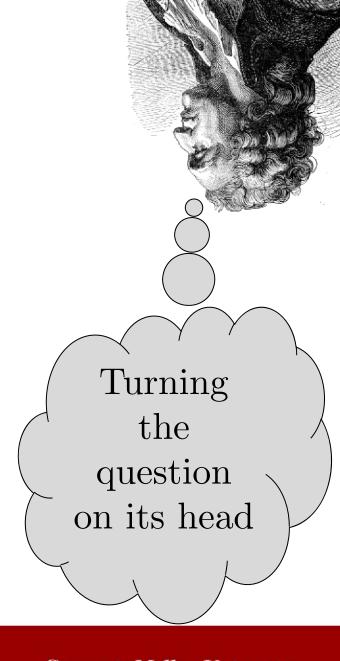
$$w_{(a,b)} = |\{i \in N \mid a >_i b\}|$$

THE KEMENY RULE

Maximize $\sum_{(a,b)} x_{(a,b)} w_{(a,b)}$ Subject to For all distinct $a,b \in A, x_{(a,b)} + x_{(b,a)} = 1$ For all distinct $a,b,c \in A, x_{(a,b)} + x_{(b,c)} + x_{(c,a)} \le 2$ For all distinct $a,b \in A, x_{(a,b)} \in \{0,1\}$

TEN YEARS LATER...

- Noise model = distribution over votes (rankings) for each true ranking
- Votes are drawn independently
- Which voting rules have a noise model for which they are MLEs of the true ranking?



SCORING RULES AS MLEWS

- Theorem [Conitzer and Sandholm 2005]: Any scoring rule is an MLE
- Proof:
 - \circ $x_1 >^* x_2 >^* \cdots >^* x_m = \text{true ranking}$
 - The probability that a voter i ranks each alternative x_i in position r_{ij} is prop. to

$$\prod_{i=1}^{m} (m+1-j)^{s_{r_{ij}}}$$

SCORING RULES AS MLEWS

• Proof (continued):

o
$$\Pr[M| <^*] \propto \prod_{i=1}^n \prod_{j=1}^m (m+1-j)^{s_{r_{ij}}}$$

• This is equal to

$$\prod_{j=1}^{m} (m+1-j)^{\sum_{i=1}^{n} S_{r_{ij}}}$$

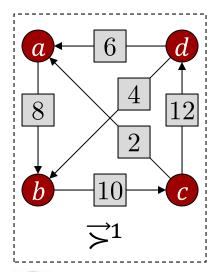
m+1-j is positive and decreasing in j, so to maximize label alternative with kth highest score as $x_k \blacksquare$

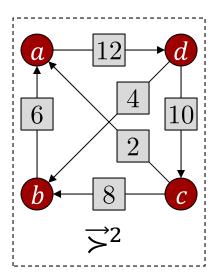
MAXIMIN IS NOT AN MLEW

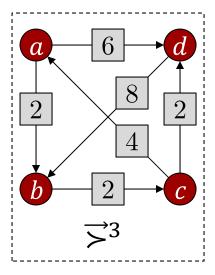
- Lemma: If there exist preference profiles $\overrightarrow{>}^1$ and $\overrightarrow{>}^2$ such that $f(\overrightarrow{>}^1) = f(\overrightarrow{>}^2) \neq f(\overrightarrow{>}^3)$, where $\overrightarrow{>}^3$ is their union, then f is not an MLE
- Proof: $\Pr[\overrightarrow{>}^3 \mid >^*] = \Pr[\overrightarrow{>}^1 \mid >^*] \cdot \Pr[\overrightarrow{>}^2 \mid >^*] \blacksquare$
- Lemma: Any pairwise comparison graph whose weights are even-valued can be realized via votes
- Proof: To increase the weight on the edge (a, b), add the votes $a > b > x_1 > \cdots > x_{m-2}$ and $x_{m-2} > \cdots > x_1 > a > b$

MAXIMIN IS NOT AN MLEW

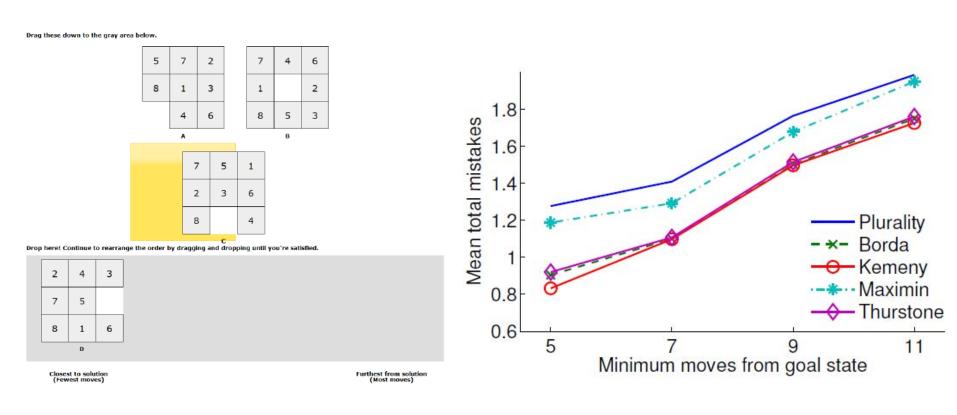
- Theorem |Conitzer and Sandholm 2005|: Maximin is not an MLE
- Proof:







SOME EXPERIMENTS



[Mao, P, Chen 2013]