

TEACHER: ARIEL PROCACCIA

BACKGROUND

- Spread of ideas and new behaviors through a population
- Examples:
 - Religious beliefs and political movements
 - Adoption of technological innovations
 - Success of new product
- Process starts with early adopters and spreads through the social network

NETWORKED COORDINATION GAMES

- Simple model for the diffusion of ideas and innovations
- Social network is undirected graph G = (V, E)
- Choice between old behavior A and new behavior B
- Parametrized by $q \in (0,1)$

NETWORKED COORDINATION GAMES

- Rewards for u and v when $(u, v) \in E$:
 - $_{\circ}$ $\,$ If both choose A, they receive q
 - If both choose B, they receive 1 q
 - $\circ \quad {\rm Otherwise \ both \ receive \ } 0$
- Overall payoff to v = sum of payoffs
- Denote $d_{v} =$ degree of $v, d_{v}^{X} = #$ neighbors playing X
- Payoff to v from choosing A is qd_v^A ; reward from choosing B is $(1-q)d_v^B$
- v adopts B if $d_v^B \ge q d_v \Rightarrow q$ is a threshold

CASCADING BEHAVIOR

- Each node simultaneously updates its behavior in discrete time steps t = 1, 2, ...
- Nodes in S initially adopt B
- $h_q(S) =$ set of nodes adopting B after one round
- $h_q^k(S) = after k$ rounds of updates
- Question: When does a small set of nodes convert the entire population?

CONTAGION THRESHOLD

- V is countably infinite and each d_{v} is finite
- v is converted by S if $\exists k \text{ s.t. } v \in h_q^k(S)$
- S is contagious if every node is converted
- It is easier to be contagious when q is small
- Contagion threshold of $G = \max q$ s.t. \exists finite contagious set

EXAMPLE

Poll 1: What is the contagion threshold of G?

15896 Spring 2016: Lecture 23

EXAMPLE

Poll 2: What is the contagion threshold of G?

15896 Spring 2016: Lecture 23

PROGRESSIVE PROCESSES

- Nonprogressive process: Nodes can switch from A to B or B to A
- Progressive process: Nodes can only switch from *A* to *B*
- As before, a node v switches to B if a q fraction of its neighbors N(v) follow B
- $\bar{h}_q(S) = \text{set of nodes adopting } B$ in progressive process; define $\bar{h}_q^k(S)$ as before

PROGRESSIVE PROCESSES

- With progressive processes intuitively the contagion threshold should be at least as high
- Theorem [Morris, 2000]: For any graph G, \exists finite contagious set wrt $h_q \Leftrightarrow \exists$ finite contagious set wrt \overline{h}_q
- I.e., the contagion threshold is identical under both models

PROOF OF THEOREM

- Lemma: $\overline{h}_q^k(X) = h_q\left(\overline{h}_q^{k-1}(X)\right) \cup X$
- Proof:
 - $\circ \quad \overline{h}_q^k(X) = (\overline{h}_q^k(X) \setminus \overline{h}_q^{k-1}(X)) \cup (\overline{h}_q^{k-1} \setminus X) \cup X$
 - $\circ \quad \overline{h}_q^k(X) \setminus \overline{h}_q^{k-1}(X) = h_q\left(\overline{h}_q^{k-1}(X)\right) \setminus \overline{h}_q^{k-1}(X)$
 - For every $v \in \overline{h}_q^{k-1} \setminus X$, $v \in h_q(\overline{h}_q^{k-1}(X))$, because v has at least as many B neighbors as when it converted

Clearly
$$X \subseteq h_q\left(\overline{h}_q^{k-1}(X)\right) \cup X$$

PROOF OF THEOREM

- Enough to show: given a set S that is contagious wrt \overline{h}_q , there is a set T that is contagious wrt h_q
- Let ℓ s.t. $S \cup N(S) \subseteq \overline{h}_q^\ell;$ this is our T
- For $k>\ell,\, \bar{h}^k_q(S)=h_q\big(\bar{h}^{k-1}_q(S)\big)\cup S$ by the lemma
- Since $N(S) \subseteq \overline{h}_q^{k-1}(S), S \subseteq h_q(\overline{h}_q^{k-1}(S))$, and hence $\overline{h}_q^k(S) = h_q(\overline{h}_q^{k-1}(S))$
- By induction, all $k > \ell$, $\bar{h}_q^k(S) = h_q^{k-\ell}(\bar{h}_q^\ell) = h_q^{k-\ell}(T)$

15896 Spring 2016: Lecture 23

CONTAGION THRESHOLD $\leq 1/2$

- Saw a graph with contagion threshold 1/2
- Does there exist a graph with contagion threshold > 1/2?
- The previous theorem allows us to focus on the progressive case
- Theorem [Morris, 2000]: For any graph G, the contagion threshold $\leq 1/2$

PROOF OF THEOREM

- Let q > 1/2, finite S
- Denote $S_j = \overline{h}_q^j(S)$
- $\delta(X) = \text{set of edges with exactly}$ one end in X
- If $S_{j-1} \neq S_j$ then $\left|\delta(S_j)\right| < \left|\delta(S_{j-1})\right|$
 - For each $v \in S_j \setminus S_{j-1}$, its edges into S_{j-1} are in $\delta(S_{j-1}) \setminus \delta(S_j)$, and its edges into $V \setminus S_j$ are in $\delta(S_j) \setminus \delta(S_{j-1})$
- $\delta(S)$ is finite and $\delta(S_j) \ge 0$ for all $j \blacksquare$

More General Models

- Directed graphs to model asymmetric influence
- Redefine $N(v) = \{u \in V : (u, v) \in E\}$
- Assume progressive contagion
- Node is active if it adopts B; activated if switches from A to B

15896 Spring 2016: Lecture 23

LINEAR THRESHOLD MODEL

- Nonnegative weight w_{uv} for each edge $(u, v) \in E$; $w_{uv} = 0$ otherwise
- Assume $\forall v \in V, \sum_{u} w_{uv} \leq 1$
- Each $v \in V$ has threshold θ_v
- v becomes active if

$$\sum_{\text{active } u} w_{uv} \geq \theta_v$$

15896 Spring 2016: Lecture 23

GENERAL THRESHOLD MODEL

- Linear model assumes additive influences
 - Switch if two co-workers and three family members switch?
- v has a monotonic function $g_v(\cdot)$ defined on subsets $X \subseteq N(v)$
- v becomes activated if the activated subset $X \subseteq N(v)$ satisfies $g_v(X) \ge \theta_v$

THE CASCADE MODEL

- When $\exists (u, v) \in E$ s.t. u is active and v is not, u has one chance to activate v
- v has an incremental function $p_v(u, X) =$ probability that u activates v when Xhave tried and failed
- Special cases:

Ο

• Diminishing returns: $p_v(u, X) \ge p_v(u, Y)$ when $X \subseteq Y$

Independent cascade: $p_v(u, X) = p_{uv}$