CMU 15.896

 NONCOOPERATIVE GAMES 4: STACKELBERG GAMESTEACHER:
ARIEL PROCACCIA

A curious game

- Playing up is a dominant strategy for row player
- So column player would play left
- Therefore, $(1,1)$ is the only Nash equilibrium
 outcome

COMMITMENT IS GOOD

- Suppose the game is played as follows:
- Row player commits to playing a row
- Column player observes the commitment and chooses column

- Row player can commit to playing down!

COMMITMENT TO MIXED STRATEGY

- By committing to a mixed strategy, row player can guarantee a reward of 2.5
- Called a Stackelberg (mixed) strategy

Computing Stackelberg

- Theorem [Conitzer and Sandholm 2006]: In 2-player normal form games, an optimal Stackelberg strategy can be found in poly time
- Theorem [ditto]: the problem is NP-hard when the number of players is ≥ 3

TRACTABILITY: 2 PLAYERS

- For each pure follower strategy s_{2}, we compute via the LP below a strategy x_{1} for the leader such that
- Playing s_{2} is a best response for the follower
- Under this constraint, x_{1} is optimal
- Choose x_{1}^{*} that maximizes leader value $\max \sum_{s_{1} \in S} x_{1}\left(s_{1}\right) u_{1}\left(s_{1}, s_{2}\right)$
s.t. $\forall s_{2}^{\prime} \in S, \sum_{s_{1} \in S} x_{1}\left(s_{1}\right) u_{2}\left(s_{1}, s_{2}\right) \geq \sum_{s_{1} \in S} x_{1}\left(s_{1}\right) u_{2}\left(s_{1}, s_{2}^{\prime}\right)$

$$
\begin{aligned}
& \sum_{s_{1} \in S} x_{1}\left(s_{1}\right)=1 \\
& \forall s_{1} \in S, x_{1}\left(s_{1}\right) \in[0,1]
\end{aligned}
$$

APPLICATION: SECURITY

- Airport security: deployed at LAX
- Federal Air Marshals
- Coast Guard
- Idea:
- Defender commits to mixed strategy
- Attacker observes and best responds

SECURITY GAMES

- Set of targets $T=\{1, \ldots, n\}$

- Attacker chooses one target to attack

SECURITY GAMES

- For each target t, there are four numbers: $u_{d}^{+}(t) \geq u_{d}^{-}(t)$, and

$$
u_{a}^{+}(t) \leq u_{a}^{-}(t)
$$

- Let $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right)$ be the vector of coverage probabilities
- The utilities to the defender/attacker under c if target t is attacked are $u_{d}(t, \boldsymbol{c})=u_{d}^{+}(t) \cdot c_{t}+u_{d}^{-}(t)\left(1-c_{t}\right)$ $u_{a}(t, \boldsymbol{c})=u_{a}^{+}(t) \cdot c_{t}+u_{a}^{-}(t)\left(1-c_{t}\right)$
targets
ources
s

This is a 2-player Stackelberg game. Can we compute an optimal strategy for the defender in polynomial time?

Solving security games

- Consider the case of $\Sigma=T$, i.e., resources are assigned to individual targets, i.e., schedules have size 1
- Nevertheless, number of leader strategies is exponential
- Theorem [Korzhyk et al. 2010]: Optimal leader strategy can be computed in poly time

A COMPACT LP

- LP formulation similar to previous one
- Advantage: logarithmic in \#leader strategies
- Problem: do probabilities

$$
\begin{array}{ll}
\max & u_{d}\left(t^{*}, c\right) \\
\text { s.t. } & \forall \omega \in \Omega, \forall t \in A(\omega), 0 \leq c_{\omega, t} \leq 1 \\
& \forall t \in T, c_{t}=\sum_{\omega \in \Omega: t \in A(\omega)} c_{\omega, t} \leq 1 \\
& \forall \omega \in \Omega, \sum_{t \in A(\omega)} c_{\omega, t} \leq 1 \\
& \forall t \in T, u_{a}(t, \boldsymbol{c}) \leq u_{a}\left(t^{*}, \boldsymbol{c}\right)
\end{array}
$$ strategy?

15896 Spring 2016: Lecture 20
Carnegie Mellon University 13

FIXING THE PROBABILITIES

- Theorem [Birkhoff-von Neumann]: Consider an $m \times n$ matrix M with real numbers $a_{i j} \in[0,1]$, such that for each $i, \sum_{j} a_{i j} \leq 1$, and for each $j, \sum_{i} a_{i j} \leq 1$ (M is kinda doubly stochastic). Then there exist matrices M^{1}, \ldots, M^{q} and weights w^{1}, \ldots, w^{q} such that:

1. $\quad \sum_{k} w^{k}=1$
2. $\quad \sum_{k} w^{k} M^{k}=M$
3. For each k, M^{k} is kinda doubly stochastic and its elements are in $\{0,1\}$

- The probabilities $c_{\omega, t}$ satisfy theorem's conditions
- By 3 , each M^{k} is a deterministic strategy
- By 1, we get a mixed strategy
- By 2, gives right probs

GENERALIZING?

- What about schedules of size 2 ?
- Air Marshals domain has such schedules:
outgoing+incoming flight (bipartite graph)
- Previous apporoach fails
- Theorem [Korzhyk et al. 2010]: problem is NP-hard

Newsweek
 National News

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr
Newsweek
Updated: 1:00 p.m. PT Sept 28, 2007

Sept. 28, 2007 - Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely unpredictable. Now all airport security officials

Security forces work the sidewalk have to do is press a button labeled
"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

CRITICISMS

- Problematic assumptions:

1. The attacker exactly observes the defender's mixed strategy
2. The defender knows the attacker's utility function
3. The attacker behaves in a perfectly rational way

- We will focus on relaxing assumption \#1

LIMITED SURVEILLANCE

- Let us compare two worlds:

1. Status quo: The defender optimizes against an attacker with unlimited observations (i.e., complete knowledge of the defender's strategy), but the attacker actually has only k observations
2. Ideal: The defender optimizes against an attacker with k observations, and, miraculously, the attacker indeed has exactly k observations

LIMITED SURVEILLANCE

- Theorem [Blum et al. 2014]: Assume that utilities are normalized to be in $[-1,1]$. For any $\epsilon>0$, there is a zero-sum security game such that the difference between worlds 2 and 1 is $1 / 2-\epsilon$
- Lemma: If $|A|=\binom{2 k}{k}$, there exists $\mathcal{D}=$ $\left\{D_{1}, \ldots, D_{2 k}\right\} \subseteq 2^{A}$ such that:

1. $\forall i,\left|D_{i}\right|=|A| / 2$
2. Each $a \in A$ is in exactly k members of \mathcal{D}
3. If $\mathcal{D}^{\prime} \subset \mathcal{D}$ and $\left|\mathcal{D}^{\prime}\right| \leq k$ then $\cup \mathcal{D}^{\prime} \neq A$

PROOF OF THEOREM

- m resources, each can defend any d targets, $2 m d \geq\binom{ 2 k}{k}, n=\left\lceil\frac{m d}{\epsilon}\right\rceil$ targets
- For any target i, zero-sum utilities with $U_{d}^{+}(i)=1$ and $U_{d}^{-}(i)=0$
- Poll: The optimal strategy (in the status quo world) defends each target with probability roughly...?

PROOF OF THEOREM

- Next we define a much better strategy against an attacker with k observations
- $A=$ subset of targets $\left\{1, \ldots,\binom{2 k}{k}\right\} \subseteq T$
- Define $\left\{D_{1}, \ldots D_{2 k}\right\}$ as in the lemma
- Pure strategy S_{i} covers D_{i}; this is valid because $\left|D_{i}\right|=|A| / 2 \leq m d$ (by property 1)
- Let S^{*} be the uniform distribution over $S_{1}, \ldots, S_{2 k}$
- By property $2, S^{*}$ covers each target in A with probability $1 / 2$
- By property $3, k$ observations from S^{*} would show some target in A never being covered; that target is attacked

LIMITED SURVEILLANCE

- Theorem [Blum et al. 2014]: For any zerosum security game with n targets, m resources, and a set of schedules with max coverage d, and for any k observations, the difference between the two worlds is at most

$$
o\left(\sqrt{\frac{\ln (m d k)}{k}}\right)
$$

