

REMINDER: VOTING

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A, |A| = m
- Each voter has a ranking over the alternatives
- $x >_i y$ means that voter i prefers x to y
- Preference profile $\overrightarrow{>}$ = collection of all voters' rankings
- Voting rule f = function from preference profiles to alternatives
- Important: so far voters were honest!

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!

1	2	3
b	b	a
a	a	b
c	c	c
d	d	d

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

BORDA RESPONDS TO CRITICS

My scheme is intended only for honest men!

Random 18th
Century
French Dude

STRATEGYPROOFNESS

• A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences:

$$\forall \overrightarrow{\prec}, \forall i \in \mathbb{N}, \forall \prec'_i, f(\overrightarrow{\prec}) \geqslant_i f(\prec'_i, \overrightarrow{\prec}_{-i})$$

Maximum value of m for which plurality is SP?

STRATEGYPROOFNESS

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is constant if the same alternative is always chosen
- Constant functions and dictatorships are SP

Dictatorship

Constant function

GIBBARD-SATTERTHWAITE

- A voting rule is onto if any alternative can win
- Theorem (Gibbard-Satterthwaite): If $m \geq 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

Gibbard

Satterthwaite

PROOF SKETCH OF G-S

- Lemmas (prove in HW1):
 - ∘ Strong monotonicity: f is SP rule, $\overrightarrow{\prec}$ profile, $f(\overrightarrow{\prec}) = a$. Then $f(\overrightarrow{\prec}') = a$ for all profiles $\overrightarrow{\prec}'$ s.t. $\forall x \in A, i \in N$: $[a \succ_i x \Rightarrow a \succ_i' x]$
 - Pareto optimality: f is SP+onto rule, $\vec{\prec}$ profile. If $a \succ_i b$ for all $i \in N$ then $f(\vec{\prec}) \neq b$
- Let us assume that $m \ge n$, and neutrality: $f\left(\pi(\overrightarrow{\prec})\right) = \pi\left(f(\overrightarrow{\prec})\right)$ for all $\pi: A \to A$

PROOF SKETCH OF G-S

- Say n = 4 and $A = \{a, b, c, d, e\}$
- Consider the following profile

	1	2	3	4
	a	b	c	d
→ _	b	c	d	a
<=	c	d	a	b
	d	a	b	c
	e	е	e	e

- Pareto optimality $\Rightarrow e$ is not the winner
- Suppose $f(\vec{\prec}) = a$

PROOF SKETCH OF G-S

1	2	3	4		
a	b	c	d		
b	c	d	\mathbf{a}		
\mathbf{c}	d	a	b		
d	a	b	c		
e	e	e	e		
$\overrightarrow{\prec}$					

1	2	3	4		
a	d	d	d		
d	a	a	\mathbf{a}		
b	b	b	b		
c	c	c	c		
e	e	e	e		
$\overrightarrow{\prec}^1$					

• Strong monotonicity $\Rightarrow f(\overrightarrow{\prec}^1) = a$

1	2	3	4
\mathbf{a}	d	d	d
d	a	a	a
b	b	b	b
\mathbf{c}	c	c	c
e	e	e	e

2	3	4
d	d	d
b	a	\mathbf{a}
\mathbf{c}	b	b
e	c	c
a	e	e
	b c e	b a c b e c

Poll 1: How many options are there for $f(\overrightarrow{\prec}^2)$?

- *1.* 1

1	2	3	4	1	2	3	4	1	2	3	4
\mathbf{a}	d	d	d	a	d	d	d	a	d	d	d
d	b	a	a	d	b	b	\mathbf{a}	d	b	b	b
b	c	b	b	b	c	c	b	b	c	c	c
c	e	c	c	c	e	e	c	\mathbf{c}	е	e	e
e	\mathbf{a}	e	e	e	\mathbf{a}	\mathbf{a}	e	e	a	\mathbf{a}	a
	$\overline{\prec}$	2			$\overline{\prec}$	3			$\overline{\prec}$	4	

- Pareto optimality $\Rightarrow f(\overrightarrow{\prec}^j) \notin \{b, c, e\}$
- $[SP \Rightarrow f(\overrightarrow{\prec}^j) \neq d] \Rightarrow f(\overrightarrow{\prec}^j) = a$
- Strong monotonicity $\Rightarrow f(\vec{\prec}) = a$ for every $\vec{\prec}$ where 1 ranks a first
- Neutrality \Rightarrow 1 is a dictator

CIRCUMVENTING G-S

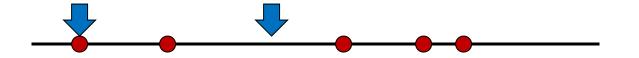
- Restricted preferences (this lecture)
- Money ⇒ mechanism design (later)
- Computational complexity (this lecture)

SINGLE PEAKED PREFERENCES

- We want to choose a location for a public good (e.g., library) on a street
- Alternatives = possible locations
- Each voter has an ideal location (peak)
- The closer the library is to a voter's peak, the happier he is

SINGLE PEAKED PREFERENCES

- Leftmost point mechanism: return the leftmost point
- Midpoint mechanism: return the average of leftmost and rightmost points

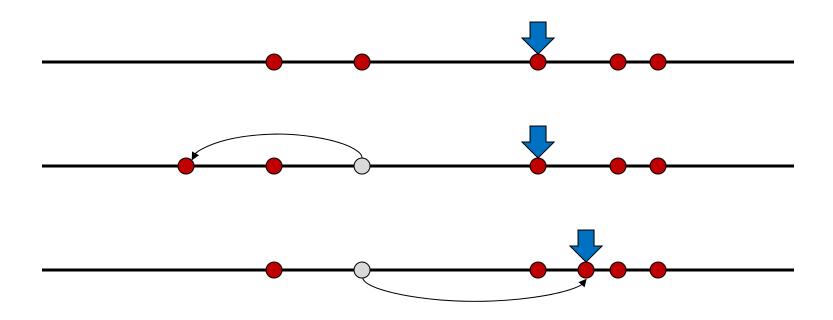


Which of the two mechanisms is SP?

THE MEDIAN

- Select the median peak
- The median is a Condorcet winner!
- The median is onto
- The median is nondictatorial

THE MEDIAN IS SP



COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? |Bartholdi et al., SC&W 1989]

THE COMPUTATIONAL PROBLEM

- f-Manipulation problem:
 - Given votes of nonmanipulators and a preferred candidate p
 - Can manipulator cast vote that makes puniquely win under f?
- Example: Borda, p = a

1	2	3
b	b	
a	\mathbf{a}	
c	c	
d	d	

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

A GREEDY ALGORITHM

- Rank *p* in first place
- While there are unranked alternatives:
 - If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
 - o Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	c
c	c		c	c		c	c	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a	c	a	a	c	a	a	c
a c	a c	b	а С	a c	$\frac{\mathrm{c}}{\mathrm{d}}$	a c	a c	$\frac{\mathrm{c}}{\mathrm{d}}$

1	2	3	4	5
a	b	e	e	a
b	a	c	c	
c	d	b	b	
d	e	a	a	
e	c	d	d	

D	J	_		4	
c	2	2	-	3	1
d	0	0	1	-	6
e	2	2	3	2	_

b

a

Preference profile

Pairwise elections

d

5

3

3

1	2	3	4	5
a	b	е	e	\mathbf{a}
b	a	c	c	c
c	d	b	b	
d	e	a	a	
e	c	d	d	

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	0	1	-	2
e	2	2	3	2	-

Preference profile

1	2	3	4	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	
e	c	d	d	

	a	b	\mathbf{c}	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	_	4	2
d	0	1	1	_	3
e	2	2	3	2	-

Preference profile

1	2	3	4	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	\mathbf{c}	d	d	

	a	b	\mathbf{c}	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	3	3	2	-

Preference profile

1	2	3	4	5
a	b	e	e	\mathbf{a}
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	b

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	3	3	2	-

Preference profile

WHEN DOES THE ALG WORK?

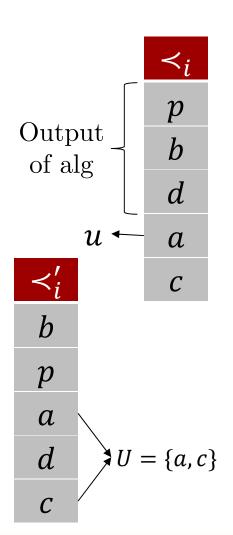
- Theorem Bartholdi et al., SCW 89: Fix $i \in N$ and the votes of other voters. Let f be a rule s.t. \exists function $s(\prec_i, x)$ such that:
 - For every \prec_i , f chooses a candidate that uniquely maximizes $s(\prec_i, x)$
 - 2. $\{y: y \prec_i x\} \subseteq \{y: y \prec_i' x\} \Rightarrow S(\prec_i, x) \leq S(\prec_i', x)$

Then the algorithm always decides f-Manipulation correctly

What is *s* for plurality?

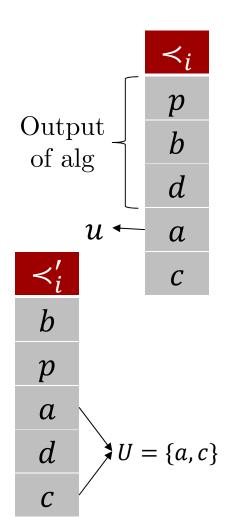
PROOF OF THEOREM

- Suppose the algorithm failed, producing a partial ranking \prec_i
- Assume for contradiction \prec_i' makes p win
- $U \leftarrow$ alternatives not ranked in \prec_i
- $u \leftarrow \text{highest ranked alternative in } U$ according to \prec_i'
- Complete \prec_i by adding u first, then others arbitrarily



PROOF OF THEOREM

- Property $2 \Rightarrow s(\prec_i, p) \ge s(\prec_i', p)$
- Property 1 and \prec' makes p the winner $\Rightarrow s(\prec'_i, p) > s(\prec'_i, u)$
- Property $2 \Rightarrow s(\prec_i', u) \ge s(\prec_i, u)$
- Conclusion: $s(\prec_i, p) > s(\prec_i, u)$, so the alg could have inserted u next \blacksquare



VOTING RULES THAT ARE HARD TO MANIPULATE

- Natural rules
 - Copeland with second order tie breaking [Bartholdi et al., SCW 89]
 - STV [Bartholdi&Orlin, SCW 91]
 - Ranked Pairs [Xia et al., IJCAI 09]
 Order pairwise elections by decreasing strength of victory
 Successively lock in results of pairwise elections unless it leads to cycle
 Winner is the top ranked candidate in final order
- Can also "tweak" easy to manipulate voting rules [Conitzer&Sandholm, IJCAI 03]

